
Implementing Leap Traversals of the Itemset Lattice

Mohammad El-Hajj Osmar R. Zaı̈ane
Department of Computing Science, University of Alberta

Edmonton, AB, Canada
{mohammad, zaiane}@cs.ualberta.ca

ABSTRACT
The Leap-Traversal approach consists of traversing the item-
set lattice by deciding on carefully selected nodes and avoid-
ing systematic enumeration of candidates. We propose two
ways to implement this approach. The first one uses a simple
header-less frequent pattern tree and the second one parti-
tions the transaction space using COFI-trees. In this paper
we discuss how to avoid nodes in the lattice that would not
participate in the answer set and hence drastically reduce
the number of candidates to test out. We also study the
performance of HFP-Leap and COFI-Leap in comparison
with other algorithms.

1. INTRODUCTION
Discovering frequent patterns is a fundamental problem in
data mining. The problem is by no means solved and re-
mains a major challenge, in particular for extremely large
databases. The idea behind these algorithms is the identi-
fication of a relatively small set of candidate patterns, and
counting those candidates to keep only the frequent ones.
The fundamental difference between the algorithms lies in
the strategy to traverse the search space and to prune ir-
relevant parts. For frequent itemsets, the search space is
a lattice connecting all combinations of items between the
empty set and the set of all items. Regardless of the prun-
ing techniques, the sole purpose of an algorithm is to re-
duce the set of enumerated candidates to be counted. The
strategies adopted for traversing the lattice are always sys-
tematic, either depth-first or breadth-first, traversing the
space of itemsets either top-down or bottom-up. Among
these four strategies, there is never a clear winner, since
each one either favors long or short patterns, thus heavily
relying on the transactional database at hand. Our primary
motivation here is to find a new traversal method that nei-
ther favors nor penalizes a given type of dataset, and at
the same time allows the application of lattice pruning for
the minimization of candidate generation. Moreover, while
discovering frequent patterns can shed light on the content
and trends in a transactional database, the discovered pat-

terns can outnumber the transactions themselves, making
the analysis of the discovered patterns impractical and even
useless. New attempts toward solving such problems are
made by finding the set of maximal frequent patterns [4, 1,
10, 6, 11], where a frequent itemset is said to be maximal if
there is no other frequent itemset that subsumes it. While
we can derive the set of all frequent itemsets directly from
the maximal patterns, their support cannot normally be ob-
tained without counting with an additional database scan.
Both our Leap-Traversal implementations we present herein
traverse the itemset lattice in search of frequent maximals
first. Our approaches collect enough information in the pro-
cess to be able to generate all frequent patterns with their
exact support from this set of maximals without having to
perform an additional data scan. The data structure used
to perform this is presented herein.

1.1 Problem Statement
The problem of mining frequent itemsets stems from the
problem of mining association rules over market basket anal-
ysis as introduced in [2]. The problem consists of finding
sets of items (i.e. itemsets) that are sufficiently frequent
in a transactional atabase. The data could be retail sales
in the form of customer transactions, text documents [9],
or even medical images [17]. These frequent itemsets have
been shown to be useful for other applications such as rec-
ommender systems, diagnosis, decision support, telecommu-
nication, and even supervised classification. They are used
in inductive databases [14], query expansion [15], document
clustering [5], etc. Formally, as defined in [3], the problem
is stated as follows: Let I = {i1, i2, ...im} be a set of literals,
called items and m is considered the dimensionality of the
problem. Let D be a set of transactions, where each trans-
action T is a set of items such that T ⊆ I. A transaction
T is said to contain X, a set of items in I, if X ⊆ T . An
itemset X is said to be frequent if its support s (i.e. ratio of
transactions in D that contain X) is greater than or equal to
a given minimum support threshold σ. A frequent itemset
M is considered maximal if there is no other frequent set
that is a superset of M.

1.2 Contributions in this paper
In this paper we study the new traversal approach, called
leap-traversal, and integrate it in two implementations: one
that mines a variation of FP-tree and the other one parti-
tioning using COFI-trees. While these approaches are not
particularly competitive with small datasets, we show supe-
rior performance of HFP-Leap and COFI-Leap over other

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OSDM’05, August 21, 2005, Chicago, Illinois, USA.
Copyright 2005 ACM 1-59593-210-0/05/08 ...$5.00.

16

approaches with very large datasets (real and synthetic).

The rest of this paper is organized as follows: Section 2 de-
scribes the existing traversal approaches and explains the
new leap-traversal method. In the same section, we dis-
cuss our pattern intersection strategies using and pruning a
tree of intersection possibilities. Since we adopt some data-
structures from the literature, we briefly describe in Section
3 the FP-tree, our modified data-structure: the Headerless
FP-tree and COFI-trees. The complete algorithms are also
presented in Section 3. Section 4 presents the related work
in this discipline, while Section 5 depicts the performance
evaluation of our new approaches comparing them to the
commonly used methods in terms of candidate generation.
We also compare them with existing state-of-the-art algo-
rithms to determine results in term of speed, scalability, and
memory usage on dense and sparse data.

2. TRAVERSAL APPROACHES
Existing algorithms use either breadth-first-search or depth-
first-search strategies to find candidates that will be used to
determine the frequent patterns. Breadth-first-search tra-
verses the lattice level-by-level: where it uses frequent pat-
terns at level k to generate candidates at level k+1 before
omitting the non-frequent ones and keeping the frequent
ones to be used for the level k+2, and so on. This ap-
proach usually uses many database scans, and it is not fa-
vored while mining databases that are made of long frequent
patterns. When traversing the same lattice as in Figure 1
using a breadth-first strategy, frequent 1-itemsets are first
generated, then used to generate longer candidates to be
tested from size two to above. In our token example, this
approach would test 18 candidates to finally discover the 13
frequent ones. Five were unnecessarily tested. On the con-
trary depth-first-search tries to detect the long patterns at
the beginning and only back-tracks to generate the frequent
patterns from the long ones that have already been declared
as frequent. For longer patterns, depth-first-search indeed
outperforms the breadth-first method. But in cases of sparse
databases where long candidates do not occur frequently, the
depth-first-search is shown to have poor performance. Using
the depth-first approach with the same lattice as in Figure
1, 23 candidates are tested, 10 of them unnecessarily.

It is true that many algorithms have been published for enu-
merating and counting frequent patterns, and yet all algo-
rithms still use one of the two traversal strategies (depth-
first vs. breadth-first) in their search. They differ only in
their pruning techniques and structures used. No work has
been done to find new traversal strategies, such as greedy
ones, or best first, etc. We need a new greedy approach that
jumps in the lattice searching for the most promising nodes
and based on these nodes it would generate the set of all
frequent patterns.

2.1 Leap Traversal Approach: Candidate Gen-
eration vs. Maximal generation

Most frequent itemset algorithms follow the candidate gen-
eration first approach, where candidate items are generated
first and only the candidate with support higher than the
predefined threshold are declared as frequent while others
are omitted. One of the main objectives of the existing

algorithms is to reduce the number of candidate patterns.
In this work, we propose a new approach to traverse the
search space for frequent patterns that is based on find-
ing two things: the set of maximal patterns, and a data-
structure that encodes the support of all frequent patterns
that can be generated from the set of maximal frequent pat-
terns. Since maximal patterns alone do not suffice to gener-
ate the subsequent patterns, the data structure we use keeps
enough information about frequencies to counter this defi-
ciency. The basic idea behind the leap traversal approach is
that we try to identify the frequent pattern border in the lat-
tice by marking some particular patterns (called later path
bases). Simply put, the marked nodes are those represent-
ing complete sub-transactions of frequent items. How these
are identified and marked will be discussed later. If those
marked patterns are frequent, they belong to the border (i.e.
they are potential maximal) otherwise their subsets could be
frequent, and thus we jump in the lattice to patterns derived
from the intersection of infrequent marked patterns in the
anticipation of identifying the frequent pattern border. The
intersection comes from the following intuition: if a marked
node is not a maximal, a subset of it should be maximal.
However, rather than testing all its descendants, to reduce
the search space we look at descendant’s of two non-frequent
marked nodes at a time, hence the pattern intersection. The
process is repeated until all currently intersected marked
patterns are frequent and hence the border is found. Before
we explain the Leap-Traversal approach in detail, let us de-
fine the Frequent-Path-Bases (FPB). Simply put, these are
some particular patterns in the itemset lattice that we mark
and use for our traversal. An FPB if frequent could be a
maximal. If infrequent, one of its subsets could be frequent
and maximal. A frequent-path-base for an item A, called
A-Frequent-Path-Base, is a set of frequent items that has
the following properties:

1. At maximum one A-FPB can be generated from one
transaction.

2. All frequent items in an A-frequent path base have
support greater than or equal to the support of A;

3. Each A-FPB represents items that physically occur in
the database with item A.

4. Each A-FPB has its branch-support, which represents
the number of occurrences for this A-FPB in the database
exactly alone (i.e. not as subset of other FPBs). In
other words, the branch support of a pattern is the
number of transactions that consist of this pattern, not
the transactions that include this pattern along with
other frequent items. The branch support is always
less or equal to the support of a pattern.

As an example for the leap-traversal, assuming we have an
oracle to generate for us the Frequent-Pattern-Bases from
the token database in Figure 1, the same figure illustrates
the process. With the initial FPBs ABC, ABCD, ACDE
and DE (given by our hypothetical oracle) we end-up test-
ing only 10 candidates to discover 13 frequent patterns, two
were tested unnecessarily (ABCD and ACDE) but 5 pat-
terns were directly identified as frequent without even test-
ing them: AB, AC, AD, BC, CD. From the initially marked
nodes, ABC and DE are found frequent, but ABCD and
ACDE are not. The intersection of those two nodes yields

17

TID Items

1 ABC

2 ABCD

3 ABC

4 ACDE

5 DE

2

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

1

2

2 2

3

Steps
Bottom

Top

x

x x

x

10 candidates
to check

5 frequent patterns
without checking

Itemset is
candidate if it is
marked or if it is a
subset of more
than one
infrequent marked
superset

Figure 1: Leap-Traversal

ACD. This newly marked node is found frequent and thus
maximal. From the maximals ACD, DE and ABC, we gen-
erate all the subsequent patterns, some even without testing
(AB, AC, AD, BC and CD). The supports of these patterns
are calculated from their superset FPBs. For example, AC
has the support of 4 since ABC occurs (alone) twice, ABCD
and ACDE occur each alone once.

Frequent pattern bases that have support greater than the
predefined support (i.e. frequent patterns) are put aside as
they are already known to be frequent and all their subsets
are also known to be frequent. Only infrequent ones partic-
ipate in the leap traversal approach, which consists of inter-
secting non-frequent FPBs to find a common subset of items
shared among the two intersected patterns. The support of
this new pattern is found as follows without revisiting the
database: the support of Y where Y = FPB1 ∩ FPB2, is
the summation of the branch support of all FPBs that are
superset of Y . For example if we have only two frequent
path bases ABCD: 1, and ABEF: 1, by intersecting both
FPBs we get AB that occurs only once in ABCD and once
in ABEF which means it occurs twice in total. By doing so,
we do not have to traverse any candidate pattern of size 3 as
we were able to jump directly to the first frequent pattern of
size 2, which can be declared de-facto as a maximal pattern,
hence the name leap-traversal. Consequently, all its subsets
are also frequent, which are A and B with support of 2 as
they occur only once in each of the frequent path bases.

The Leap-Traversal approach starts by building a lexico-
graphic tree of intersections among the Frequent-Pattern-
Bases FPBs. It is a tree of possible intersections between
existing FPBs ordered in a lexicographic manner. Assume
we have 6 FPBs A, B, C, D, E, and F then Figure 2 de-
picts the lexicographic tree of intersections between these
pattern bases. The size of this tree is relatively big as it
has a depth equal to the number of FPBs, which is 6 in our
case. It is also unbalanced to the left since intersection is
commutative. The number of nodes for this tree equals to
52, as The number of nodes in a lexicographic tree equals to

∑n
i=1(

n
i) where n is the number of Frequent Pattern Bases.

It is obvious that the more FPBs we have, the larger the
tree becomes. Thus, pruning this tree plays an important
role for having an efficient algorithm.

Four pruning techniques can be applied to the lexicographic
tree of intersections. These pruning strategies can be ex-
plained by the following theorems:

Theorem 1: ∀X, Y ∈ FPBs ordered lexicographically, if
X∩Y is frequent then there is no need to intersect any other
elements that have X ∩ Y ., i.e, all children of X ∩ Y can be
pruned.
Proof: ∀A, X, Y ∈ FPBs, A∩X ∩Y ⊂ X ∩Y . If X ∩Y is
frequent then A ∩ X ∩ Y is also frequent (apriori property)
as a subset of a frequent pattern is also frequent.

Theorem 2: ∀X, Y, Z, W ∈ FPBs ordered lexicographi-
cally, if X ∩ Y = X ∩ W and Y � W (i.e Y is left of W in
the lexicographic tree) then there is no need to explore any
children of X ∩ Y . Since Z is left of W (or equal to W) in
the lexicographical order, all children of X ∩ Y will also be
children of X ∩ Z or X ∩ W .
Proof: To prove this theorem we need to show that any
children of X ∩Y are repeated under another pattern X ∩Z
that always exists. Since X∩Y = X∩W , then X∩Y ∩Z =
X ∩Z ∩W (intersection is commutative) and X ∩Z ∩W al-
ways exists in the lexicographic tree of intersections because
of the order. Then, we can prune X ∩ Y .

Theorem 3: ∀X, Y, Z ∈ FPBs ordered lexicographically,
if X ∩Y ⊂ X ∩Z then we can ignore the subtree X ∩Y ∩Z.
Proof: Assume we have X, Y, Z ∈ FPBs, Since X ∩ Y ⊂
X ∩Z then X ∩ Y ∩Z = X ∩ Y . This means we do not get
any additional information by intersecting Z with X ∩ Y .
Thus, the subtree under X ∩ Y suffices.

Theorem 4: ∀X, Y, Z ∈ FPBs, if X ∩ Y ⊃ X ∩ Z then
we can ignore the subtree of X ∩ Z as long X ∩ Z is not
frequent.
Proof: following the proof of Theorem 3 we can conclude
that X ∩ Z is included in X ∩ Y .

Lemma 1: At each level of the lexicographic tree of inter-
sections, consider each item as a root of a new subtree:
(A) Intersect the siblings for each node with the root
(B) If a set exists and it is not frequent then we can prune
that node.
Proof: Assume we have X, Y, Z ∈ FPBs, if X is a parent
node then if X∩Y ∩Z exists and is not frequent then any su-
perset for this intersected node is also not frequent (apriori
property) that is why any intersection of X with any other
item is also not frequent.

2.2 Heuristics used for building and travers-
ing the lexicographic tree

Heuristic 1: The lexicographic tree of intersections of FPBs
needs to be ordered. Four ways of ordering could be used
which are: order by support, support branch, pattern length,
and random. Ordering by support yields the best results,
as intersecting two patterns with high support in general
would generate a pattern with higher support than inter-

18

A = 1 3 4 5 7 8 9
B = 1 2 3 4 5 9
C = 1 2 3 4 5 7 8 9
D = 2 3 6 7 8 9
E = 1 3 4 5 6 7 8 9
F = 1 2 3 4 5 6 7 8 9

1 3 4 5 7 8 9 1 2 3 4 5 9 1 2 3 4 5 7 8 9 2 3 6 7 8 9 1 3 4 5 6 7 8 9 1 2 3 4 5 6 8 9

B
1 3 4 5 9 1 3 4 5 7 8 9 3 7 8 9 1 3 4 5 7 8 9 1 3 4 5 7 8 9 1 2 3 4 5 9 2 3 9 1 3 4 5 9 1 2 3 4 5 9 2 3 7 8 9 1 3 4 5 7 8 9 1 2 3 4 5 7 8 9 3 6 7 8 9 2 3 6 7 8 9 1 3 4 5 6 7 8 9

1 3 4 5 9 3 9 1 3 4 5 9 1 3 4 5 9 3 7 8 9 1 3 4 5 7 8 9 1 3 4 5 7 8 9 3 7 8 9 3 7 8 9 1 3 4 5 7 8 9 2 3 9 1 3 4 5 9 1 2 3 4 5 9 3 9 2 3 9 1 3 4 5 9 3 7 8 9 2 3 7 8 9 1 3 4 5 7 8 9 3 6 7 8 9

3 9 4 1 4 5 6 9 1 3 4 5 9 3 9 3 9 1 3 4 5 9 3 7 8 9 3 7 8 9 1 3 4 5 7 8 9 3 7 8 9 3 9 2 3 9 1 3 4 5 9 3 9 3 7 8 9

3 9 3 9 1 3 4 5 9 3 9 3 7 8 9 3 9

3 9

Null

C

A

A

D E F

A A A

B C

A B

A A B

B

B

B

B B

D

A A A A A A A A

B C C CB B B B

D D E

A A A A A A

B C C C

A A A

A A B

A

1
A

A A A

1
1
1
1

2
2
1

FPBs Support
4
3
2

Branch Support
1

Figure 2: Lexicographic tree of intersections

secting two patterns with lower support. Ordering the tree
by assigning the high support nodes at the left increases the
probability of finding early frequent patterns in the left and
by using Theorem 1, a larger subtree can be pruned.

Heuristic 2: The second heuristic deals with the traver-
sal of the lexicographic tree. The breadth-traversal of the
tree is better than the depth-traversal. This observation
can be justified by the fact that the goal of the lattice Leap-
Traversal approach is to find the maximal patterns, which
means finding longer patterns early is the goal of this ap-
proach. Thus, by using the breadth-first approach on the in-
tersection tree, we detect and test the longer patterns early
before applying too many intersections that usually lead to
smaller patterns.

3. TREE STRUCTURES USED
In both algorithms we use the leap-traversal approach. Al-
gorithm 4 that performs the actual leap-traversal to find
maximal patterns is called from both HFP-Leap [16] and
COFI-Leap. We will first present the idea behind HFP-
Leap then show the use of COFI-trees to perform the same
type of jumps in the lattice.

The Leap-Traversal approach we discuss consists of two main
stages: the construction of a Frequent Pattern tree (HFP-
tree); and the actual mining for this data structure by build-
ing the tree of Intersected patterns.

3.1 Construction of the Frequent Pattern Tree
The goal of this stage is to build the compact data struc-
ture called Frequent Pattern Tree, which is a prefix tree
representing sub-transactions pertaining to a given mini-
mum support threshold. This data structure compressing
the transactional data was contributed by Han et al. in [12].
The tree structure we use, called HFP-tree is a variation of
the original FP-tree. However, we will start introducing the
original FP-tree before discussing the differences with our
data structure. The construction of the FP-tree is done in
two phases, where each phase requires a full I/O scan of the
database. A first initial scan of the database identifies the
frequent 1-itemsets. The goal is to generate an ordered list
of frequent items that would be used when building the tree
in the second phase.

After the enumeration of the items appearing in the trans-
actions, infrequent items with a support less than the sup-
port threshold are weeded out and the remaining frequent
items are sorted by their frequency. This list is organized in
a table, called header table, where the items and their re-
spective support are stored along with pointers to the first
occurrence of the item in the frequent pattern tree. The ac-
tual frequent pattern tree is built in the second phase. This
phase requires a second complete I/O scan of the database.
For each transaction read, only the set of frequent items
present in the header table is collected and sorted in de-
scending order according to their frequency. These sorted

19

1 5 0 2 1 0

2 3 0 3 2 0 3 1 0

3 3 0 4 2 0 6 1 0

4 3 0 5 2 0 7 1 0

5 3 0 6 1 0 7 1 0 8 1 0

6 1 0 7 1 0 9 1 0 7 1 0 8 1 0 9 1 0

7 1 0 8 1 0 8 1 0 9 1 0

8 1 0 9 1 0 9 1 0

9 1 0

null

Figure 3: Headerless FP-tree: An Example.

transaction items are used in constructing the FP-Tree.

Each ordered sub-transaction is compared to the prefix tree
starting from the root. If there is a match between the pre-
fix of the sub-transaction and any path in the tree starting
from the root, the support in the matched nodes is simply
incremented, otherwise new nodes are added for the items
in the suffix of the transaction to continue a new path, each
new node having a support of one. During the process of
adding any new item-node to the FP-Tree, a link is main-
tained between this item-node in the tree and its entry in
the header table. The header table holds one pointer per
item that points to the first occurrences of this item in the
FP-Tree structure.

Our tree structure is the same as the FP-tree except for the
following differences. We call this tree Headerless-Frequent-
Pattern-Tree or HFP-tree.

1. We do not maintain a header table, as a header table
is used to facilitate the generation of the conditional
trees in the FP-growth model. It is not needed in our
leap traversal approach;

2. We do not need to maintain the links between the same
itemset across the different tree branches (horizontal
links);

3. The links between nodes are bi-directional to allow
top-down and bottom-up traversals of the tree;

4. All leaf nodes are linked together as the leaf nodes are
the start of any pattern base and linking them helps
the discovery of frequent pattern bases;

5. In addition to support, each node in the HFP-tree has
a second variable called participation. Participation
plays a similar role in the mining process as the par-
ticipation counter in the COFI-tree [7].

Basically, the support represents the support of a node,
while participation represents, at a given time in the mining
process, the number of times the node has participated in
already counted patterns. Based on the difference between
the two variables, participation and support, the special pat-
terns called frequent-path-bases are generated. These are
simply the paths from a given node x, with participation
smaller than the support, up to the root, (i.e. nodes that
did not fully participate yet in frequent patterns). Figure 3
presents the Headerless FP-tree for the same dataset used
in Figure 2.

Algorithm 1 shows the main steps in our approach. After
building the Headerless FP-tree with 2 scans of the database,
we mark some specific nodes in the pattern lattice using
FindFrequentPatternBases. Using the FPBs, the leap-traversal
in FindMaximals discovers the maximal patterns at the fre-
quent pattern border in the lattice.

Algorithm 1 HFP-Leap: Leap-Traversal with Headerless
FP-tree

Input: D (transactional database); σ (Support thresh-
old).
Output: Maximal patterns with their respective sup-
ports.

Scan D to find the set of frequent 1-temsets F1
Scan D to build the Headerless FP-tree HFP
FPB ← FindFrequentPatternBases(HFP)
Maximals ← FindMaximals(FPB, σ)
Output Maximals

Algorithm 3 shows how patterns in the lattice are marked.
The linked list of leaf nodes in the HFP-tree is traversed to
find upward the unique paths representing sub-transactions.
If frequent maximals exist, they have to be among these
complete sub-transactions. The participation counter helps
reusing nodes exactly as needed to determine the frequent
path bases.

3.2 Construction of the COFI trees
A COFI-tree [8] is a projection of each frequent item in
the original FP-tree [12] (not the Headerless FP-tree). Each
COFI-tree, for a given frequent item, presents the co-occurrence
of this item with other frequent items that have more sup-
port than it. In other words, if we have 4 frequent items A,
B, C, D where A has the smallest support, and D has the
highest, then the COFI-tree for A presents co-occurrence of
item A with respect to B, C and D, the COFI-tree for B
presents item B with C and D. COFI-tree for C presents
item C with D. Finally, the COFI-tree for D is a root node
tree. Each node in the COFI-tree has two main variables,
support and participation. Participation indicates the num-
ber of patterns the node has participated in at a given time
during the mining step. Based on the difference between
these two variables, participation and support, frequent-
path-bases are generated. The COFI-tree has also a header

20

Algorithm 2 COFI-Leap: Leap-Traversal with COFI-tree

Input: D (transactional database); σ (Support thresh-
old).
Output: Maximal patterns with their respective sup-
ports.

Scan D to find the set of frequent 1-itemsets F1
Scan D to build the FP-tree FP − TREE
A ← frequent item with least support
for ∀A do

Generate COFI tree for A, A − COFI
FPB ← FindFrequentPatternBases(A − COFI)
Maximals ← FindMaximals(FPB, σ)
Output Maximals
Cleat A − COFI
A ← Next item with larger support if still exists

end for

table that contains all locally frequent items with respect
to the root item of the COFI-tree. Each entry in this table
holds the local support, and a link to connect its item with
its first occurrences in the COFI-tree. A link list is also
maintained between nodes that hold the same item to facil-
itate the mining procedure. Frequent pattern bases are gen-
erated from each COFI tree alone using the same approach
used by the Headerless FP-tree. One of the advantages of
using COFI-trees over the Headerless FP-tree is that we can
skip building some COFI-trees during the mining process.
This is due to the fact that before we build any COFI-tree we
check all its local frequent items, if all its items are a subset
of an already discovered maximal pattern, then there is no
need to build and mine this COFI-tree as all its sub-patterns
are subsets of already discovered maximal patterns.

Algorithm 2 shows the main steps in the COFI-Leap ap-
proach. After building the FP-tree with 2 scans of the
database, we create independently COFI trees, in each of
the COFI-tree, we mark some specific nodes in the pattern
lattice using FindFrequentPatternBases. Using the FPBs,
the leap-traversal in FindMaximals discovers the maximal
patterns at the frequent pattern border in the lattice.

3.3 Actual Mining of Frequent-Path-Bases: The
Leap-Traversal approach

Algorithm 4 is the actual leap traversal to find maximals us-
ing FP-trees generated all at one time using the Headerless
FP-tree or in chunks using COFI-tree approach. It starts
by listing some candidate maximals stored in PotentialMaxi-
mals which is initialized with the frequent pattern bases that
are frequent. All the non-frequent FPBs are used for the
jumps of the lattice leap traversal. These FPBs are stored
in the list List and intermediary lists NList and NList2 will
store the nodes in the lattice that intersection of FPBs would
point to, in other words, the nodes that may lead to max-
imals. The nodes in the lists have two attributes: flag and
startpoint. For a node n, flag indicates that a subtree in the
intersection tree should not be considered starting from the
node n. For example, if node (A∩B) has a flag C, then the
subtree under the node (A ∩ B ∩ C) should not be consid-
ered. For a given node n, startpoint indicates which subtrees

Algorithm 3 FindFrequentPatternBases: Marking nodes
in the lattice

Input: HFP (Headerless FP-Tree) OR A − COFI.
Output: FPB (Frequent pattern bases with counts)

ListNodesF lagged ← ∅
Follow the linked list of leaf nodes in HFP
for each leaf node N do

Add N to ListNodesF lagged
end for
while ListNodesF lagged �= ∅ do

N ← Pop(ListNodesF lagged) {from top of the list}
fpb ← Path from N to root
fpb.branchSupport ← N .support - N .participation
for each node P in fpb do

P .participation ← P .participation +
fpb.branchSupport
if P .participation < P .support AND ∀c child of P ,
c.participation = c.support then

add P in ListNodesF lagged
end if

end for
add fpb in FPB

end while
RETURN FPB

in the intersection tree, descendants of n, should be consid-
ered. For example, if a node (A ∩ B) has the startpoint D,
then only the descendants (A ∩ B ∩ D) and so on are con-
sidered, but (A ∩ B ∩ C) is omitted. Note that ABCD are
ordered lexicographically. At each level in the intersection
tree, when NList2 is updated with new nodes, the theorems
are used to prune the intersection tree. In other words, the
theorems help avoid useless intersections (i.e. useless maxi-
mal candidates). The same process is repeated for all levels
of the intersection tree until there is no other intersections
to do (i.e. NList2 is empty). At the end, the set poten-
tial maximals is cleaned by removing subsets of any sets in
PotentialMaximals.

It is obvious in the Leap-traversal approach that superset
checking and intersections plays an important role. We
found that the best way to work with this is by using the
bit-vector approach where each frequent item is represented
by one bit in a vector. In this approach, intersection is noth-
ing but applying the AND operation between two vectors,
and subset checking is nothing but applying the AND oper-
ation followed by equality checking between two vectors. If
A ∩ B = A then A is a subset of B.

4. RELATED WORK
There is a plethora of algorithms proposed in the literature
to address the issue of discovering frequent itemsets. The
most important, and at the basis of many other approaches,
is apriori [3]. The property that is at the heart of apriori
and forms the foundation of most algorithms simply states
that for an itemset to be frequent all its subsets have to be
frequent. This anti-monotone property reduces the candi-
date itemset space drastically. However, the generation of
candidate sets, especially when very long frequent patterns
exist, is still very expensive. Moreover, apriori is heavily
I/O bound. Another approach that avoids generating and

21

Algorithm 4 FindMaximals: The actual leap-traversal

Input: FPB (Frequent Pattern Bases); σ (Support
threshold).
Output: Maximals (Frequent Maximal patterns)

{which FPBs are maximals?}
List ← FPB
PotentialMaximals ← ∅
for each i in List do

Find support of i {using branch supports}
if support(i) > σ then

Add i to PotentialMaximals
Remove i from List

end if
end for

Sort List based on support
NList ← List
NList2 ← ∅
∀i ∈ NList initialize i.flag ← NULL AND i.startpoint ←
index of i in NList
while NList �= ∅ do

{Intersections of FPBs to select nodes to jump to}
for each i in NList do

g ← Intersect(i, j) {where j ∈ List AND i � j (in
lexicographic order) AND not j.flag}
g.startpoint ← j
Add g to NList2

end for

{Pruning starts here}
for each i in NList2 do

Find support of i {using branch supports}
if support(i) > σ then

Add i to PotentialMaximals
Remove all duplicates or subsets of i in NList2;
Remove i from NList2 {Theorem 1}

else
if duplicates of i exist in NList2 then remove them
except the most right one then remove i from
NList2 {Theorem 2}
Remove all non frequent subsets of i from NList2
{Theorem 4}
if ∃j ∈ NList2 AND j ⊇ i then

i.flag ← j {Theorem 3}
end if
for all j in List do

if j � i.startpoint (in lexicographic order) then
n ← Intersect(i, j)
Find support of n {using branch supports}
if support(n) < σ then

Remove i from NList2 {Lemma 1}
end if

end if
end for

end if
end for
NList ← NList2
NList2 ← ∅

end while
Remove any x from PotentialMaximals if (∃M ∈
PotentialMaximals AND x ⊂ M)
Maximals ← PotentialMaximals
RETURN Maximals

testing itemsets is FP-Growth [12]. FP-Growth generates,
after only two I/O scans, a compact prefix tree represent-
ing all sub-transactions with only frequent items. A clever
and elegant recursive method mines the tree by creating
projections called conditional trees and discovers patterns
of all lengths without directly generating all candidates the
way apriori does. However, the recursive method to mine
the FP-tree requires significant memory, and large databases
quickly blow out the memory stack.

MaxMiner [4], DepthProject [1], GenMax [10], & MAFIA [6]
are state-of-the-art algorithms that specialize in finding fre-
quent maximal patterns. MaxMiner is an apriori-like algo-
rithm that might need to scan the database k times to find
a pattern of length k. This algorithm performs a breadth-
first traversal of the search space. At the same time it per-
forms intelligent pruning techniques to eliminate irrelevant
paths of the search tree. A look-ahead strategy achieves this,
where there is no need to further process a node if it, with all
its extensions, is determined to be frequent. To improve the
effectiveness of the superset frequency pruning, MaxMiner
uses a reorder strategy. DepthProject performs a depth-first
search of the lexicographic tree of the itemsets with some su-
perset pruning. It also uses a look-ahead pruning with item
reordering. The result of the mining process of DepthPro-
ject is a superset of maximal patterns and requires a post-
pruning to remove non-maximal patterns. MAFIA, which is
one of the fastest maximal algorithms, uses many pruning
techniques such as the look-ahead used by the MaxMiner,
checking if a new set is subsumed in another existing max-
imal set, and other clever heuristics. GenMax is a vertical
approach that uses a novel strategy, progressive focusing,to
find supersets. In addition, it counts supports faster using
diffsets [18].

5. PERFORMANCE EVALUATIONS
To evaluate our leap-traversal approach, we conducted a
set of different experiments using both approaches HFP-
Leap and COFI-Leap. First, we measured their effective-
ness compared to other algorithms when mining relatively
small datasets. We also compared our algorithms with other
state-of-the-art algorithms solely to discover the maximal
patterns, in terms of speed, memory usage and scalability.

For mining Maximal Frequent Itemsets (MFIs), Depth-Project [1]
was shown to achieve more than one order of magnitude
speedup over MaxMiner [4]. MAFIA [6] was shown to out-
perform DepthProject by a factor of 3 to 5. Gouda and
Zaki presented GENMAX that has been described in their
work [10] as the current best method to mine the set of ex-
act MFIs. They also claim that MAFIA is the best method
for mining the superset of all MFIs.

The contenders we tested against are MAFIA [6], FPMAX [11]
and GENMAX [10]. MAFIA was shown to outperform MaxMiner [4]
and Depth-Project [1] for mining maximal itemsets. FP-
MAX is an extension of the FP-Growth [12] approach. We
used an enhanced code of FPMAX that won the FIMI-2003
award for best frequent mining implementation. The imple-
mentations of these algorithms were all provided to us by
their original authors or downloaded from the FIMI repos-
itory. We used the latest version of MAFIA that does not
need a post-pruning step and generates directly the set of ex-

22

act MFIs. All our experiments were conducted on an IBM
P4 2.6GHz with 1GB memory running Linux 2.4.20-20.9
Red Hat Linux release 9. Timing for all algorithms includes
the pre-processing cost such as horizontal to vertical con-
versions for both GenMax and MAFIA. The time reported
also includes the program output time. We tested these
algorithms using both real and synthetic datasets. All ex-
periments were forced to stop if their execution time reached
our wall time of 5000 seconds. We made sure that all algo-
rithms reported the same exact set of frequent itemsets on
each dataset (i.e. no false positives and no false negatives).

5.1 Mining real databases
The first set of experiments we conducted mined real datasets
such as Plant-Protein and retail. Plant-Protein data is a
very dense dataset with about 3000 transactions using more
than 7000 items (subsequence of amino-acids). The transac-
tions represent plant proteins extracted from SWISS-PROT.
In these experiments we found that FPMAX is almost al-
ways the winner in terms of speed. On the other hand, we
also found that these algorithms (except Leap approach al-
gorithms) use extremely large amount of memory, in spite
of the fact that the tested database where in general small
in terms of number of transactions. This observation raised
the following question, “How do these algorithms behave
once they start mining extremely large databases?” To
test this idea we expiremented these algorithms on synthetic
databases ranging from 5,000 transactions up to 50 million
transactions, with dimensions ranging from 5000 items to
100,000 items. All experiments on the Plant-Protein and
retail database are depicted in Figures 4, and 6 for the time
comparison ones, and in Figures 5, and 7 for the memory
usage comparison ones.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

30% 25% 20% 15%

Support

T
im

e
in

se
co

n
d

s
.

COFI-Leap

HFP-Leap

FPMAX

MAFIA

Figure 4: Mining Plant-Protein database

0

5

10

15

20

25

30

35

40

45

50

5% 2.50% 1% 0.50% 0.10%

Support

T
im

e
in

se
co

n
d

s

COFI-Leap

HFP-Leap

GENMAX

FPMAX

MAFIA

Figure 6: Mining retail database

5.2 Mining Relatively small synthetic databases
In this set of experiments, we generated synthetic datasets
using [13]. We report results here only for MAFIA, FPMAX,
COFI-Leap, and HFP-Leap since GenMax, inexplicably, did
not generate any frequent patterns in most cases. In this set
of experiments we were focusing on studying the effect of
changing the support while testing three parameters: trans-
action length, database size, and dimension of the database.
We created databases with transaction length averaging 12
and 24 items per transaction. Our datasets also have as a
dimension size two of different values: 5000 and 10000 items.
The database size varied from 10,000 to 250,000 transactions
per database. Notice that these datasets are considered rela-
tively sparse. COFI-Leap, HFP-Leap, and FPMAX outper-
formed MAFIA in some cases by two orders of magnitude.
Among the three best algorithms we could not declare one of
them as a de-facto winner. These experiments are depicted
in Figures 8, and 9. All algorithms, except MAFIA, overlap
in the figures.

5.3 Mining Extremely large synthetic databases
To Distinguish the subtle differences between Leap approach
and FPMAX, we conducted our experiments on extremely
large datasets. In these series of experiments we used three
synthetic datasets made of 5M, 25M, and 50M transactions,
with a dimension equals to 100K items, and average trans-
action length equals to 24. All experiments were conducted
using a support of 0.05%. In mining 5M transactions the
three algorithms show similar performance as COFI-Leap
finishes in almost less than 300 seconds, HFP-Leap finishes
its work as the second in 320 second while FPMAX finishes
in 375 seconds. At 25M transactions the difference starts
to increase. The final test mining a transactional database
with 50M transactions, HFP-Leap discovers all patterns in
1980 second. COFI-Leap won HFP-Leap by almost 100 sec-
onds, while FPMAX finishes in 2985 seconds. The results,
averaged on many runs, are depicted in Figure 10.

From these experiments we see that the difference between
FPMAX and Leap-based algorithms while mining synthetic
datasets becomes clearer once we deal with extremely large
datasets. Leap approachs save at least one third of the
execution time compared to FPMAX. This is due to the
reduction in candidate checking and to the lower memory
requirements by the leap-based approachs.

0

500

1000

1500

2000

2500

3000

3500

5M 25M 50M

Transaction size

T
im

e
in

se
co

n
d

s
.

COFI-Leap

HFP-Leap

FPMAX

Figure 10: Mining extremely large database

5.4 Memory Usage
We also tested the memory usage by FPMAX, MAFIA HFP-
Leap, and COFI-Leap while mining synthetic databases. In
many cases we noticed that Leap algorithms consume one

23

Support = 15%, % of Memory usage.
COFI-Leap

1%

HFP-Leap
2%

FPMAX
34%

MAFIA
63%

COFI-Leap

HFP-Leap

FPMAX

MAFIA

Support = 30%, % of Memory usage.
COFI-Leap

2%

HFP-Leap
2%

FPMAX
34%

MAFIA
62%

COFI-Leap

HFP-Leap

FPMAX

MAFIA

Figure 5: Memory usage while mining Plant-Protein database

Support = 1%, % of Memory usage.

GENMAX
74%

COFI-Leap
1%

HFP-Leap
1%MAFIA

16%

FPMAX
8%

COFI-Leap

HFP-Leap

GENMAX

FPMAX

MAFIA

Support = 5%, % of Memory usage.

GENMAX
75%

HFP-Leap
1%

FPMAX
8%

MAFIA
15%

COFI-Leap
1%

COFI-Leap

HFP-Leap

GENMAX

FPMAX

MAFIA

Figure 7: Memory usage while mining retail database

order of magnitude less memory than both FPMAX and
MAFIA.

Figure 11 illustrates a sample of the experiments that we
conducted where the transaction size, the dimension and the
average transaction length are respectively 1000K, 5K and
12. The support was varied from 0.1% to 0.01%.

This low memory usage observed by the Leap approach is
due to the fact that HFP-Leap generates the maximal pat-
terns directly from its HFP-tree or from small chunks as in
the case of COFI-trees. Also the intersection tree is never
physically built. FPMAX, however, uses a recursive tech-
nique that keeps building trees for each frequent item tested
and thus uses much more memory.

0

50

100

150

200

250

300

350

0.10% 0.08% 0.05% 0.03% 0.01%

Support %

M
e

m
o

ry
u

sa
g

e
in

M
.b

yt
e

s
.

COFI-Leap

HFP-Leap

FPMAX

MAFIA

Figure 11: Memory usage

6. CONCLUSION
We presented a new way of traversing the pattern lattice
to search for pattern candidates. The idea is to discover
maximal patterns. Our new lattice traversal approach dra-
matically minimized the size of candidate list because it se-
lectively jumps within the lattice toward the frequent pat-
tern border. It also introduces a new method of counting

the supports of candidates based on the supports of other
candidate patterns, namely the branch supports of FPBs.

The leap-traversal is implemented with two different ap-
proaches. Both approaches are based on existing data struc-
tures, FP-tree, that we conveniently modified, and COFI-
tree. Our contribution is a new way to mine those structures
using a tree of pattern intersections with a set of pruning
methods to accelerate the discovery process. This tree of
intersection is what helps the jumping process.

The leap-traversal approach significantly reduces the num-
ber of candidates to check, and lends itself as a good frame-
work for constraint-based mining and parallel processing.
Our performance studies show that our approach outper-
forms some the state of the art methods that have the same
objective: discovering all maximal patterns by, in some cases,
two order of magnitudes while mining synthetic or extremely
large datasets. This algorithm shows drastic saving in terms
of memory usage as it has a small footprint in the main
memory at any given time.

7. REFERENCES
[1] R. Agrawal, C. Aggarwal, and V. Prasad. Depth first

generation of long patterns. In In 7th Int’l Conference
on Knowledge Discovery and Data Mining, 2000.

[2] R. Agrawal, T. Imielinski, and A. Swami. Mining
association rules between sets of items in large
databases. In Proc. 1993 ACM-SIGMOD Int. Conf.
Management of Data, pages 207–216, Washington,
D.C., May 1993.

[3] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules. In Proc. 1994 Int. Conf. Very Large
Data Bases, pages 487–499, Santiago, Chile,
September 1994.

24

D = 5,000, L = 12

0
100
200
300
400
500
600
700

10K 50K 100K 250K

Transaction size

T
im

e
in

se
co

n
d

s
.

COFI-Leap

HFP-Leap

FPMAX

MAFIA

D = 5,000, L = 24

0

200

400

600

800

1000

10K 50K 100K 250K

Transaction size

T
im

e
in

se
co

n
d

s
.

COFI-Leap

HFP-Leap

FPMAX

MAFIA

Figure 8: Mining synthetic database. D = 5000 items. Support = 0.5%

D = 10,000, L = 12

0

500

1000

1500

2000

10K 50K 100K 250K

Transaction size

T
im

e
in

se
co

n
d

s
.

COFI-Leap

HFP-Leap

FPMAX

MAFIA

D = 10,000 L = 24

0

500

1000

1500

2000

10K 50K 100K 250K

Transaction size

T
im

e
in

se
co

n
d

s
.

COFI-Leap

HFP-Leap

FPMAX

MAFIA

Figure 9: Mining synthetic database. D = 10000 items. Support = 0.5%

[4] R. J. Bayardo. Efficiently mining long patterns from
databases. In ACM SIGMOD, 1998.

[5] F. Beil, M. Ester, and X. Xu. Frequent term-based
text clustering. In Proc. 8th Int. Conf. on Knowledge
Discovery and Data Mining (KDD ’2002), Edmonton,
Alberta, Canada, 2002.

[6] D. Burdick, M. Calimlim, and J. Gehrke. Mafia: A
maximal frequent itemset algorithm for transactional
databases. In ICDE, pages 443–452, 2001.

[7] M. El-Hajj and O. R. Zäıane. Inverted matrix:
Efficient discovery of frequent items in large datasets
in the context of interactive mining. In In Proc. 2003
Int’l Conf. on Data Mining and Knowledge Discovery
(ACM SIGKDD), August 2003.

[8] M. El-Hajj and O. R. Zäıane. Non recursive
generation of frequent k-itemsets from frequent
pattern tree representations. In In Proc. of 5th
International Conference on Data Warehousing and
Knowledge Discovery (DaWak’2003), September 2003.

[9] R. Feldman and H. Hirsh. Mining associations in text
in the presence of background knowledge. In Proc. 2st
Int. Conf. Knowledge Discovery and Data Mining,
pages 343–346, Portland, Oregon, Aug. 1996.

[10] K. Gouda and M. J. Zaki. Efficiently mining maximal
frequent itemsets. In ICDM, pages 163–170, 2001.

[11] G. Grahne and J. Zhu. Efficiently using prefix-trees in
mining frequent itemsets. In FIMI’03, Workshop on
Frequent Itemset Mining Implementations, November
2003.

[12] J. Han, J. Pei, and Y. Yin. Mining frequent patterns
without candidate generation. In ACM-SIGMOD,
Dallas, 2000.

[13] IBM Almaden. Quest synthetic data generation code.
http://www.almaden.ibm.com/cs/quest/syndata.html.

[14] H. Mannila. Inductive databases and condensed
representations for data mining. In International Logic
Programming Symposium, 1997.

[15] A. Rungsawang, A. Tangpong, P. Laohawee, and
T. Khampachua. Novel query expansion technique
using apriori algorithm. In TREC, Gaithersburg,
Maryland, 1999.

[16] O. R. Zäıane and M. El-Hajj. Pattern lattice traversal
by selective jumps. In In Proc. 2005 Int’l Conf. on
Data Mining and Knowledge Discovery
(ACM-SIGKDD), August 2005.

[17] O. R. Zäıane, J. Han, and H. Zhu. Mining recurrent
items in multimedia with progressive resolution
refinement. In Int. Conf. on Data Engineering
(ICDE’2000), pages 461–470, San Diego, CA,
February 2000.

[18] M. J. Zaki and K. Gouda. Fast vertical mining using
diffsets. Technical Report Technical Report 01-1,
Department of Computer Science, Rensselaer
Polytechnic Institute, 2001.

25

