
On the Effectiveness and Efficiency of Computing
Bounds on the Support of Item-Sets in the

Frequent Item-Sets Mining Problem

Bassem Sayrafi, Dirk Van Gucht
∗

and Paul W. Purdom
Computer Science Department

Indiana University
Lindley Hall 215

Bloomington, IN 47405, USA

{bsayrafi,vgucht,pwp}@cs.indiana.edu

ABSTRACT
We study the relative effectiveness and the efficiency of comput-
ing support-bounding rules that can be used to prune the search
space in algorithms to solve the frequent item-sets mining problem
(FIM). We develop a formalism wherein these rules can be stated
and analyzed using the concept of differentials and density func-
tions of the support function. We derive a general bounding the-
orem, which provides lower and upper bounds on the supports of
item-sets in terms of the supports of their subsets. Since, in general,
many lower and upper bounds exists for the support of an item-set,
we show how to the best bounds. The result of this optimization
shows that the best bounds are among those that involve the sup-
ports of all the strict subsets of an item-set of a particular size q.
These bounds are determined on the basis of so called q-rules. In
this way, we derive the bounding theorem established by Calders
[5]. For these types of bounds, we consider how they compare rela-
tive to each other, and in so doing determine the best bounds. Since
determining these bounds is combinatorially expensive, we study
heuristics that efficiently produce bounds that are usually the best.
These heuristics always produce the best bounds on the support of
item-sets for basket databases that satisfies independence proper-
ties. In particular, we show that for an item-set I determining which
bounds to compute that lead to the best lower and upper bounds on
freq(I) can be done in time O(|I|). Even though, in practice,
basket databases do not have these independence properties, we ar-
gue that our analysis carries over to a much larger set of basket
databases where local “near” independence hold. Finally, we con-
duct an experimental study using real baskets databases, where we
compute upper bounds in the context of generalizing the Apriori al-
gorithm. Both the analysis and the study confirm that the q-rule (q
odd and larger than 1) will almost always do better than the 1-rule
(Apriori rule) on large dense baskets databases. Our experiment re-

∗The first two authors were supported by NSF Grant IIS-0082407.

veal that on these baskets databases, the 3-rule prunes almost 100%
of the search space while, the 1-rule prunes 96% of the search space
in the early stages of the algorithm. We also observe a reduction in
wasted effort when applying the 3-rule to sparse baskets databases.
In addition, we give experimental evidence that the combined use
of the lower and upper bounds determine the exact support of many
frequent item-sets without counting.

1. INTRODUCTION
We consider the relative effectiveness of various support bound
rules for the frequent item-sets mining problem (FIM) [1, 2], as well
as the problem of efficiently computing the best support bounds.
The FIM problem is the following: given a set of items I, a list
B of subsets (baskets) of I, and a nonnegative integer threshold
k ≥ 0, determine the frequency status for each subset of I, that is,
determine for each subset of I whether it is contained in at least k
of the baskets in B. A subset that satisfies (violates) this frequency
condition is called a frequent item-set (infrequent item-set, respec-
tively). Given, a threshold k, the problem asking whether there
exists a frequent item-set of a certain size in a given database has
been shown to be NP-complete [8].

The frequency status of an item-set I can be determined in two
ways. Counting: count the number of baskets in B that contain
I , and compare this count with the threshold k; or Deduction: in-
fer I’s frequency status from the (known) frequency status of other
item-sets. The best known deduction methods for the FIM prob-
lem are based on the monotonicity property and, its counterpart,
the anti-monotonicity property. The monotonicity property states
that if an item-set I has a subset that is infrequent, the I is infre-
quent, and the anti-monotonicity property states its opposite: if an
item-set I has a superset that is frequent, then I is frequent. Good
examples of how these properties have been harnessed exists in the
Apriori, the FP-growth, and the Eclat algorithms [2, 9, 15]. Given
an nonempty item-set I whose frequency status is unknown, the
Apriori Algorithm consults the frequency status of each of subsets
of size |I| − 1. If one of these subsets is infrequent, the algorithm
deduces that I is infrequent, otherwise, the algorithm determines
the frequency status of I by counting.

We will determine support bounding rules which are based on prop-
erties of the support (frequency) function beyond just the mono-
tonicity property. The bounding rules can be used in any algorithms

46

Administrator
Copyright 2



for solving the frequent item-set mining problem, thus our analysis
are algorithm independent. We develop a general bounding theo-
rem to approximate the support of a set from the supports of some
of its subsets. We construct this theorem through the use of differ-
entials and density functions associated with support functions.

The notion of differentials was consider by the first two authors in
the study of the implication problem of differential constraints [13].
To illustrate where these inequalities arise in the FIM problem, con-
sider a list of baskets B over some set of items I. The support
function supp associated with B gives for each item-set I ⊆ I, the
value supp(I) which is number of times that I is contained in the
baskets in B. Given supp, we can reason about B satisfying certain
types of inequalities. For example, supp(I) ≥ 0 states that the
support of item-set I is nonnegative. More generally, if l and u are
values in the interval [0, 1], then the inequality l|B| ≤ supp(I) ≤
u|B| states that B has at least l|B|, but not more than u|B|, baskets
containing I . These types of support inequalities were studied by
Calders and Paredaens [5, 7]. Here we study inequalities of a dif-
ferent type. Consider item-setsK, L1, and L2 of I. The inequality
supp(K) ≥ supp(I) states that K occurs at least as frequently as
I in B. A more subtle example satisfied by supp is the inequality
supp(K)−supp(K∪L1) ≥ supp(K∪L2)−supp(K∪L1∪L2),
which can be proved by an inclusion-exclusion argument. This in-
equality can be used as a lower bound for supp(K ∪ L1 ∪ L2)
[11]. Observe that we can write these two last inequalities as finite
difference equations:

supp(K)− supp(K ∪ L1) ≥ 0.
(supp(K)− supp(K ∪ L1))
−(supp(K ∪ L2)− supp(K ∪ L1 ∪ L2)) ≥ 0.

One of the main results of this paper is a general support bound-
ing theorem which we derive through the use of the differentials
of support functions. This is done in Section 3. From this theo-
rem stems a class of support bounding rules that can be used in
the deduction of the support status of an item-set. Within this class
of rules, we derive special rules (so called q-rules) that lead to the
best support bounds. The class of q-rules was previously consid-
ered by Calders in his work on deduction rules for the FIM prob-
lem [6, 5]. Since finding the best support bounds on the support
of an item-set is combinatorially expensive, we propose heuristics
that can lead to good approximations of these best bounds and that
can be computed efficiently. In Section 4, a detailed analysis of
the bounding theorem reveals that the anti-monotonicity property
will outperform other bounds except in certain situations where the
data is highly frequent. In Section 5, we give a complete solution
for the problem of determining which lower and upper bounds are
best in the context of basket databases that satisfy independence
properties. In particular, we show that for an item-set I , this can be
done in O(|I|) (Proposition 4.3). Given these theoretical insights,
we develop heuristics based on these ideas (Section 5), and provide
experimental results where the heuristics are used (Section 6). The
results of these experiments underscore that the theoretical results
predict well what happens on real-world basket databases, and that
introducing these heuristics in FIM algorithms leads to improved
algorithms and that the overhead incurred is small.

I nonempty finite set set of items
I, J , K, L subsets of I item-sets
L set of item-sets of I
[X, Y ] the set {U | X ⊆ U ⊆ Y }
A1 . . . An the set {A1, . . . , An}
X ⊂ Y X is a strict subset of Y
X the set I −X

Table 1: Notations

2. PRELIMINARIES
We review the definitions of the density, support, and frequency
functions associated with a basket database. In addition, we will
introduce the notion of the differential of the support function. Dif-
ferentials are at the core of deriving bounds on the support (fre-
quency) of item-sets. For ease of reference, in Table 2, we collect
some notations used in the paper.

2.1 Density, support, and frequency functions
of basket databases

DEFINITION 2.1. Let D = (I,B) be a basket database. The
density, the support, and the frequency functions associated with
D are defined such that for each I ⊆ I,

dens(I) = |{i | I = B[i]}|
supp(I) = |{i | I ⊆ B[i]}|
freq(I) = supp(I)

|B|

The density and support functions of a basket database are related
in the following way (dens is the Möbius inverse of supp):

supp(I) =
X

I⊆J⊆I
dens(J) (1)

dens(I) =
X

I⊆J⊆I
(−1)|J|−|I|supp(J) (2)

2.2 Differentials of support functions
Reconsider the following inequalities discussed in the introduction:

supp(K) ≥ 0 (3)
supp(K)− supp(K ∪ L1) ≥ 0 (4)

supp(K)− supp(K ∪ L1)− supp(K ∪ L2)

+supp(K ∪ L1 ∪ L2) ≥ 0 (5)

We can write these inequalities in a single format as follows:
X

J⊆L
(−1)|J |supp(K ∪

[

J∈J
J) ≥ 0,

where for inequality (3), L = ∅, for inequality (4), L = {L1}, and
for inequality (5), L = {L1, L2}. This leads to the definition of
differentials first considered in [12, 13, 14].

DEFINITION 2.2. Let L be a set of item-sets of I, and let supp
be the support function of a basket database D = (I,B). The L-
differential of supp, denoted DLsupp , is the function from 2I into N,
such that for K ⊆ I,

DLsupp(K) =
X

J⊆L
(−1)|J |supp(K ∪

[

J∈J
J).

47



EXAMPLE 2.3. Let I = {A,B,C,D}. Then,

D{B,CD}supp (A) = supp(A)− supp(AB)− supp(ACD)

+supp(ABCD).

As shown in [13], density functions and differentials are related.
The concepts of witness sets and lattice decompositions are crucial
in establishing their relationship.

DEFINITION 2.4. A set W is a witness set of L (L is a set of
some subsets of I) if (1)W ⊆ SL∈L L and (2)W has a nonempty
intersection with each set in L: ∀L ∈ L : W ∩ L 6= ∅. The set of
all witness sets of L is denoted byW(L).

Let K be a subset of I. The lattice decomposition L(K,L) of the
pair (K,L) is defined as follows:

L(K,L) =
[

W∈W(L)

[K,W ].

As shown in [13], the relationship between differentials and density
function can now be formulated as follows:

THEOREM 2.5 (DIFFERENTIAL DECOMPOSITION THEOREM).
Let D = (I,B) be a basket database, let K be a subset of I, and
let L be a set of subsets of I. Then,

DLsupp(K) =
X

J∈L(K,L)

dens(J). (6)

Observe that, since dens is a nonnegative function, D is also a
nonnegative function.

EXAMPLE 2.6. Reconsider Example 2.3. Then,

W({B,CD}) = {BC,BD,BCD}
L(A, {B,CD}) = [A,BC] ∪ [A,BD] ∪ [A,BCD]

= [A,AD] ∪ [A,AC] ∪ [A]

= {A,AC,AD}
D{B,CD}supp (A) = dens(A) + dens(AC) + dens(AD).

3. SUPPORT BOUNDING THEOREMS
We use the results obtained in Section 2 to obtain various support
bounding theorems. In particular, we are concerned with obtain-
ing lower and upper bounds on supp(I) for some item-set I ⊆ I
in terms of the support values of I’s subsets. After stating a gen-
eral bounding theorem, we will derive a bounding theorem which
gives the best lower and upper bounds on supp(I). This bounding
theorem was first formulated by Calders [5].

3.1 The support bounding theorem
For a given item-set I ⊆ I, we will consider the set of all (K,L)
pairs such that I = K ∪ SL∈L L. For each such pair, we will
derive a lower (upper) bound on supp(I) when |L| is even (odd,
respectively). To state these bounds, we first define the following
sets:

DEFINITION 3.1. Let I ⊆ I. The sets Pairs(I), EvenPairs(I),
OddPairs(I), as follows:

Pairs(I) = {(K,L) | I = K ∪
[

L∈L
L}

EvenPairs(I) = {(K,L) ∈ Pairs(I) | |L| is even}
OddPairs(I) = {(K,L) ∈ Pairs(I) | |L| is odd}

For a pair (K,L) ∈ Pairs(I), we have, by Definition 2.2 and
Theorem 2.5 that

(−1)|L|
"
supp(I)−

X

J⊂L
(−1)|L|−|J|−1

supp(K ∪
[

J∈J
J)

#

=
X

J∈L(K,L)

dens(J). (7)

Since dens is a nonnegative function, Eqn. 7 implies that following
inequality:

(−1)|L|

2
4supp(I)−

X

J⊂L
(−1)|L|−|J |−1supp(K ∪

[

J∈J
J)

3
5 ≥ 0. (8)

Inequality 8, implies upper and lower bounds on supp(I).

DEFINITION 3.2. Let D = (I,B) be a basket database. The
bounding function B associated with D is,

B(K,L) =
X

J⊂L
(−1)|L|−|J|−1

supp(K ∪
[

J∈J
J).

By Eqn. 7, we can reformulate B(L, K) as follows:

B(K,L) = supp(I)−
X

J∈L(K,L)

dens(J) |L| is even (9)

= supp(I) +
X

J∈L(K,L)

dens(J) |L| is odd. (10)

Thus, B(L, K) is a lower (upper) bound on supp(I) when |L| is
even (odd, respectively). The error in the bound is given by the
summation over the density function in the above equations. Since
the summation is nonnegative we arrive at the following bounding
theorem.

THEOREM 3.3 (SUPPORT BOUNDING THEOREM). LetD =
(I,B) be a basket database and let I be a subset of I. Then, for
each (K,L) ∈ Pairs(I),

B(K,L) ≤ supp(I) if (K,L) ∈ EvenPairs(I)

B(K,L) ≥ supp(I) if (K,L) ∈ OddPairs(I)

3.2 The best support bounds theorem
We now consider the problem of finding the best bounds on supp(I)
derivable from Pairs(I). In fact, we will show that the best bounds
come from pairs of the form (K, {{l} | l ∈ I − K}), which we
will denote as (K, I−K).

By Theorem 3.3, for a pair (K,L) ∈ Pairs(I), B(K,L) is ei-
ther a lower or an upper bound on supp(I). Some of these pairs,

48



however, lead to trivial bounds and we will eliminate these from
further consideration. A pair (K,L) is trivial if there exists an
L ∈ L such that L ⊆ K. For such a pair, it is easy to verify that
B(K,L) = supp(I). It will be useful to introduce the following
subsets of Pairs(I).

DEFINITION 3.4. Let I ⊆ I. Then,

NonTrivPairs(I) = {(K,L) ∈ Pairs | ∀L ∈ L : L 6⊆ K}
NonTrivEvenPairs(I)= NonTrivPairs(I) ∩ EvenPairs(I)
NonTrivOddPairs(I) = NonTrivPairs(I) ∩ OddPairs(I)

AtomicPairs(I) = {(K, I−K) | K ⊆ I}
AtomicEvenPairs(I) = AtomicPairs(I) ∩ EvenPairs(I)
AtomicOddPairs(I) = AtomicPairs(I) ∩ OddPairs(I)

THEOREM 3.5. Let D = (I,B) be a basket database and let I
be a I. Then,
(1) max({B(K,L) | (K,L) ∈ NonTrivEvenPairs(I)}) =

max({B(K,L) | (K,L) ∈ AtomicEvenPairs(I)})
(2) min({B(K,L) | (K,L) ∈ NonTrivOddPairs(I)}) =

min({B(K,L) | (K,L) ∈ AtomicOddPairs(I)})

Proof: We will establish (1). (The case for (2) is analogous.) Let
K ⊆ I with |I−K| even and let (K,L) ∈ NonTrivEvenPairs(I).
We will show that B(K,L) ≤ B(K, I − K). By Eqn. 9, this is
equivalent to showing that

X

L(K,L)

dens(U) ≥
X

L(K,I−K)

dens(U).

This inequality is true when L(K, I −K) ⊆ L(K,L), or equiva-
lently, whenW(I −K) ⊆ W(L). From the definition of witness
sets (Definition 2.4), it follows thatW(I−K) = {I −K}. Thus,
all we need to show is that I −K ∈ W(L). In particular, we must
show that (1) I−K ⊆ SL∈L L, and (2) ∀L ∈ L : L∩(I−K) 6= ∅.
To show condition (1), assume that there exists an l ∈ I −K such
that l 6∈ SL∈L L. But, since K ∪ SL∈L L = I , l must be in K,
but that contradicts l ∈ I −K. To show condition (2), assume that
there exists an L ∈ L such that L∩ (I −K) = ∅. But this implies
L ⊆ K, a contradiction since (K,L) is a nontrivial pair.

We can now use Theorem 3.5 to establish the following theorem
which states how to derive the best bounds:

THEOREM 3.6 (BEST SUPPORT BOUNDS THEOREM).
Let D = (I,B) be a basket database and let I be a subset of I.
Then,

max({B(K,L) | (K,L) ∈ AtomicEvenPairs(I)}) ≤ supp(I)

min({B(K,L) | (K,L) ∈ AtomicOddPairs(I)}) ≥ supp(I)

Calders [4] was the first to prove the Best Support Bounds Theorem
(Theorem 3.6) which, we have shown to be a consequence of the
Support Bounding Theorem (Theorem 3.3). He applied the Best
Support Bounds Theorem to the problem of mining non-derivable
item-sets [4]. Specifically, Calders was interested in item-sets I ,
where the lower bound on supp(I) is equal to the upper bound on

supp(I). In that case supp(I) need not be computed by counting
it in the basket database. The effectiveness of this technique in the
context of mining frequent item-sets was empirically observed in
[6].

An alternative way to state the Best Support Bounds Theorem (The-
orem 3.6) is in terms of the cardinality of I −K. In particular, the
best lower (upper) bound on supp(I) is

max({B(K, I−K) | q = |I −K|& q is even}) (11)
min({B(K, I−K) | q = |I −K|& q is odd}). (12)

These bounds lead to the notion of q-rules, where q ∈ [0, |I|]. The
q-rule for I is the following statement, relating supp(I) with the
best bounds that are obtainable from sets K ⊆ I for which |I −
K| = q:

supp(I) ≥ B(K, I−K) q is even (13)
supp(I) ≤ B(K, I−K) q is odd. (14)

For example, the 0-rule and the 2-rule state the following (let i1
and i2 be two distinct elements in I):

q = 0, K = I
supp(I) ≥ 0.

q = 2, K = I − {i1, i2}
supp(I) ≥ supp(K∪{i1})+supp(K∪{i2})−supp(K).

And, the 1-rule and the 3-rule state the following (let i1, i2 and i3
be distinct elements in I):

q = 1, K = I − {i1}
supp(I) ≤ supp(K).

q = 3, K = I − {i1, i2, i3}
supp(I) ≤ supp(K ∪ {i1, i2}) + supp(K ∪ {i1, i3})

+supp(K ∪ {i2, i3})− supp(K ∪ {i1})
−supp(K∪{i2})−supp(K∪{i3})+supp(K).

The q-rules highlight two issues that are relevant in the computa-
tion of the best bounds on supp(I). The first is that if we just
consider sets K ⊆ I such that |I − K| is fixed and even (odd),
what is an efficient way to compute the best bound obtainable on
supp(I) from these K’s? The second is when we have K and K ′

such that both |I − K| and |I − K ′| are even (odd) but of dif-
ferent sizes, which of them leads to the best bound on supp(I)?
The first issue will be addressed in the next subsection. The second
issue is more advantageously addressed by analyzing it for basket
databases that satisfy certain conditions (such as independence, see
Section 4). This is because the relative effectiveness of the rules
is determined by the comparing the sum

P
K⊆J⊆I−K dens(J)

to the sum
P
K′⊆J⊆I−K′ dens(J). Since the values of these

sums are expressed in terms of the density function of the basket
database, their comparison is entirely controlled by the properties
of the data. Thus, to gain a better understanding of this issue, we
need to make certain assumptions on this data. This will be ad-
dressed in Section 4.

49



3.3 Computing and approximating best sup-
port bounds

From the Best Support Bounds Theorem (Theorem 3.5), it follows
that the best lower bound on supp(I) is given by max({B(K,L) |
(K,L) ∈ AtomicEvenPairs(I)}), and the best upper bounds is
given by min({B(K,L) | (K,L) ∈ AtomicOddPairs(I)}). De-
termining these bounds can be computationally expensive. A naive
complexity analysis gives that this can be done in PSPACE. How-
ever, we can consider heuristics that would approximate the best
bounds, but that may lead to a more efficient search for good (but
not necessarily optimum) candidates K for obtaining bounds on
supp(I). The following proposition is insightful in this regard.

PROPOSITION 3.7. Let D = (I,B) be a basket database and
let I be a subset of I. Then, determining the best lower (upper)
bound on supp(I) can be done by minimizing the sum

X

K⊆J⊆I−K

dens(J)

over all subsets K of I .

Proof: By Theorem 3.5, the best lower (upper) bound on supp(I)
is obtained by maximizing (minimizing)B(K, {{l} | l ∈ I−K}).
By Eqn.9 (Eqn.10), this is equivalent to minimizingP
K⊆J⊆I−K dens(J) over all K ⊆ I .

The significance of Proposition 3.7 is that it allows us to deter-
mine the error of the best bounds in terms of minimizing a sum
over values of the density function. Since, as stated above, this
minimization is combinatorially expensive, it is useful to find good
approximations for these sums. In particular, we are interested in
heuristically determining a K ⊆ I that would be a good candidate
for computing the best bounds on supp(I). In this regard, we can
use the following inequality:

supp(K) =
X

K⊆J⊆I
dens(J) ≥

X

K⊆J⊆I−K

dens(J), (15)

and then use the heuristic that K can be selected by finding the
smallest value for supp(K), and then use that K to compute a
hopefully good bound on supp(I). (In Section 5, we introduce the
heuristic called Hq based on these ideas.)

Another technique to more efficiently compute an approximation
of the best bounds is to use a specific q-rule. In that case, only K’s
such that |I − K| = q need to be considered. Thus rather than
considering all possible 2|I| K sets, only

`|I|
q

´
(i.e. a polynomial

of degree q in |I|) K sets need to be considered. (In Section 5, we
consider applying this technique for q = 1, 2, and 3 and we label
these cases by R1, R2, and R3, respectively.)

4. ANALYSIS FOR BASKET DATABASES
WITH INDEPENDENCIES

We will now study the relative effectiveness and efficiency of com-
puting lower and upper bounds, as stated in of Theorem 3.6, for
basket databases that satisfy a condition of independence. Spe-
cially, we say that a basket database D = (I,B) satisfies the inde-
pendence property if for each K and L subsets of I,

supp(K ∪ L)supp(K ∩ L) = supp(K)supp(L), (16)

or, equivalently, by the definition of freq,

freq(K ∪ L)freq(K ∩ L) = freq(K)freq(L). (17)

In the rest of the paper, we will focus on freq rather than supp

because certain expressions are more transparent in terms of freq.
We use freq(i) as a shorthand for freq({i}). With this notation,
the independence property can be shown to be equivalent to the
following statement: for each I ⊆ I,

freq(I) =
Y

i∈I
freq(i) (18)

Using the frequency function we can represent the ideas from Sec-
tion 3 as follows.

DEFINITION 4.1. Let D = (I,B) be a basket database. For
each pair (K,L), the (K,L)-bound, Bfreq(K,L), on freq(I) is
defined such thatBfreq(K,L) =

P
J⊂L(−1)|L|−|J |−1freq(K∪S

J∈J J).

THEOREM 4.2. Let D = (I,B) be a basket database and let I
be a subset of I. Then,

max({Bfreq(K,L) | (K,L) ∈ AtomicEvenPairs(I)}) ≤ freq(I)

min({Bfreq(K,L) | (K,L) ∈ AtomicOddPairs(I)}) ≥ freq(I)

Furthermore, in analogy with Proposition 3.7, determining the best
lower (upper) bound on freq(I) can be done by minimizing the
sum

P
K⊆J⊆I−K dens(J) over all subsets K of I .

In the case where the basket database D = (I,B) satisfies the
independence condition, the bound Bfreq(K, I−K) is such that,

Bfreq(K, I−K) = freq(K)
X

J⊂I−K
(−1)|I−K|−|J|−1freq(J) (19)

In the following subsections, we present an analysis for determin-
ing lower an upper bounds on freq(I) for basket databases that
satisfy the independence condition. In Subsection 4.1, we study
the relative effectiveness of different q-rules on the quality of the
bounds. In Subsection 4.2, within the context of a fixed q-rule, we
examine different heuristics to efficiently determine a K such that
Bfreq(K, I −K) is the best possible bound.

4.1 Inter-analysis between different q-rules
From Eqn. 13 and Eqn. 14, we learned that we can enumerate dif-
ferent lower bounds and upper bounds on freq(I) depending on
the cardinality q of I −K. We are interested in studying the rela-
tive effectiveness of different q rules to obtain good bounds. To that
end, we consider a comparison between a q-rule and a q + 2-rule
where q is even (odd). Specifically, letK be such that |I −K| = q
and let i1 and i2 be two different elements of K, and let K ′ denote
the setK−{i1, i2}. Thus I−K′ = (I−K)∪{i1, i2} and there-
fore |I −K′| = q + 2. By Eqn. 19, comparing Bfreq(K, I − K)

50



and Bfreq(K
′, I−K’) leads to the comparison:

freq(K)(−1)|I−K|−1
X

J⊂I−K
(−1)|J|freq(J)

vs freq(K ′)(−1)|I−K
′|−1

X

J′⊂I−K′
(−1)|J

′|
freq(J ′)

After some algebraic simplification, this is equivalent to,

(−1)|I−K|−1
freq(K)

" Y

j∈I−K
(1 − freq(j))

#

vs (−1)|I−K|−1
freq(K ′)

2
4 Y

j∈(I−K)∪i2i3

(1 − freq(j))

3
5 ,

which, after further algebraic reductions, yields the following com-
parison:

(−1)|I−K|−1
freq(K ′)

" Y

j∈I−K
(1− freq(j))

#

[freq(i1) + freq(i2)− 1] vs 0. (20)

This shows that for q even (q odd), the bound obtained using the
q+ 2-rule will be better than the bound obtained using the q-rule if
and only freq(i1) + freq(i2) > 1.

4.2 Intra-analysis within a fixed q-rule
Within a context of a fixed q-rule, we now consider the problem
of determining a K such that Bfreq(K, I−K) is the best possible
bound for that q. To that end, let X be a subset of I , and let i
and i′ be two different elements in I − X . Let K = X ∪ {i}
and let K′ = X ∪ {i′}. Furthermore, assume that |I − K| = q
(clearly, therefore |I −K ′| = q). We are interested in comparing
Bfreq(K, I−K) and Bfreq(K

′, I−K′). By Eqn. 19, this leads to
the following comparison:

(−1)|I−K|−1
freq(X)freq(i)

" Y

j∈I−K
(1− freq(j))

#

vs (−1)|I−K
′|−1

freq(X)freq(i′)

2
4 Y

j∈I−K′
(1− freq(j))

3
5 ,

which, after algebraic simplification is equivalent to the following
comparison:

(−1)|I−K|−1
freq(X)

2
4 Y

j∈I−(K∪K′)
(1− freq(j))

3
5

ˆ
freq(i)− freq(i′)

˜
vs 0. (21)

Assuming that freq(X)
hQ

j∈I−(K∪K′)(1− freq(j))
i
6= 0, the

above comparison shows that, for q even (q odd) Bfreq(K, I −
K) will be the better lower bound (upper bound) if and only if
freq(i) ≤ freq(i′).

Using this fact inductively implies that, given I , a K ⊆ I with
|I −K| = q, which leads to the best q-bound can be obtained by
letting K consists of those elements of I from which have been
removed the q elements of I with the highest frequencies. For
example, if I = {i1, i2, i3, i4} and freq(i1) ≤ freq(i2) ≤

freq(i3) ≤ freq(i4), and q = 1, the best K will be the set
I − {i4} = {i1, i2, i3}. When q = 2, K = {i1, i2}, when q = 3,
K = {i1}, and when q = 4, K = ∅.

Combining the inter-analysis and intra-analysis results yields the
following proposition:

PROPOSITION 4.3. Let D = (I,B) be a basket database and
let I = {i1, . . . , in} (n ≥ 1) be a subset of I. Furthermore, with-
out loss of generality, assume that freq(i1) ≤ · · · ≤ freq(in),
with n ≥ 2. IfD satisfies the independence property, then aK that
leads to the best lower (upper) bound on freq(I) consists of those
elements of I from which have been removed the q elements of I
with the highest frequencies, where q is the largest even (odd) value
in [0, n−1] at which the condition freq(in−q)+freq(in−q−1) ≥
1 holds. Furthermore, this search for a best K can be done in
O(|I|), provided that the frequencies on the items in I are known.

REMARK 4.4. 1. As should be clear from the formulas used
in the previous analysis, requiring the independence property
on D is not necessary. For example, for Proposition 4.3 to
hold at a particular I , it is sufficient that the independence
property holds locally at I . In addition, examining the pre-
vious analysis in more detail shows that the results still hold
for situations where near independence holds. We are cur-
rently working on formally determining precise definitions
of “near” which are sufficient to determine these results.

2. If there exists no q that satisfies the condition freq(in−q) +
freq(in−q−1) ≥ 1, then the 0-rule, which yield the bounds
0, and the 1-rule (i.e., the Apriori rule) give the best lower
and upper bound on supp(I).

3. Notice that determining the best q does not require comput-
ing the bound values. This is in contrast with methods that
explicitly need the computation of the bound values to deter-
mine the best bounds.

5. ALGORITHMIC IMPACT
We will now investigate methods of applying the theoretical results
about bounding the FIM problem. We propose using heuristics in
the FIM problem in two places. The first place is to use different q-
rules as heuristics in pruning the search space of the FIM problem.
We will call these FIM heuristics. The second place is, in the con-
text of a fixed q-rule, to use heuristics that can efficiently compute
good candidates forK that lead to bounds that well-approximate or
equal the best bounds for the q-rule. We call these bounding rules
heuristics.

FIM heuristics
FIM heuristics have been used in many FIM algorithms, such as
Apriori, FP-growth and Eclat [2, 9, 15]. In these algorithms, the
FIM heuristics that is used is the 1-rule to bound supp(I) in terms
of the supports of its subsets of size |I| − 1. Obviously, if one
of these supports has been found to fall below threshold, then I is
an infrequent item-set and can be pruned from the search space.
However, if all that is determined is that the supports of some or
all of these subsets are above threshold, then the 1-rule proposes
to determine the supp(I) by counting, and depending on its value
to determine whether it is frequent or not. We propose using other
q-rules (q odd) to possibly compute better bounds to further reduce

51



Function: R3
Input: Item-Set I .
Output: Return true if I needs to be counted.
1) For each |K| = |I| − 3
2) Get support of J where K ⊆ J ⊂ I .
3) If J is infrequent return false.
4) If upperbound(K, I −K) > threshold
5) return true
7) Else
8) return false.

Function: O3
Input: Item-Set I .
Output: Return true if I needs to be counted.
1) Set K equal to I without is 3 most frequent items
2) Get support of J where K ⊆ J ⊂ I .
3) If J is infrequent return false.
4) If upperbound(K, I −K) > threshold
5) return true
6) Else
7) return false.

Figure 1: Pseudo-code of the functions R3 and O3 test candidate Function

the search space in FIM problems. Furthermore, when, in the com-
putation of such bounds, it is discovered (by counting) that a subset
of I is infrequent, then we stop and do not further compute the
bound. Thus the algorithm harnesses both the monotonicity prop-
erty, and the value of the bounds against the threshold. Using this
breakout technique the q-rules will always do as well as the 1-rule.

Bounding rules heuristics
Given a fixed q, the best bound on supp(I) is obtained by selecting
a K that minimizes

P
K⊆J⊆I−K d(J) (see Proposition 3.7). The

crude way of doing that is by computing the bound for every pos-
sible K (of fixed size) and selecting the best bound. We describe
this method below.

Rq The exhaustive way to determineK is to search through
`|I|
q

´

sets and for each of these sets, compute the bound B(K, I−
K) is computed and tested against the support threshold. We
label this approach Rq (e.g. R1 and R3 when q = 1 and
q = 3 respectively). This will involve obtaining the support
of the 2q−1 subsets of I . Thus the total cost of Rq is no more
than

`|I|
q

´
2q−1.

In the quest for a set K of a fixed size so that the bound computed
is the best among the bounds computed using other K sets of the
same size, we propose two different heuristics.

Hq We can reduce the cost needed for finding K such thatP
K⊆J⊆I−K d(J) is minimized if we use Eqn. (15) and ap-

proximate that sum with supp(K). Thus, this approach will
first search through the

`|I|
q

´
subsets of I and determine a K

with minimum support. For such a K, the bound B(K, I −
K) is computed and tested against the support threshold. We
label this approach Hq (e.g. H3 for q = 3). The total cost of
Hq is no more than

`|I|
q

´
+ 2q−1 .

Oq (Oq*) We develop a heuristic aimed at reducing the cost of Hq. The
idea is to assume that freq(K) and supp(K) are minimized
when the frequency of the individual items comprising K
are minimal. This idea is based on the theoretical results of
Section 4. To implement this heuristic, the frequencies of
the individual items of an item-set of size |I| are obtained
and sorted by frequency. Then K is selected such that the
items with the highest q frequencies are filtered out. Once
K is selected, one can proceed in the usual way to compute

the bound B(K, I −K) and compare it against the support
threshold. We label this approach Oq (e.g. O3 when q = 3).
The total cost of Oq is no more than |I| + 2q−1. Note that
unlike Rq neither Hq nor Oq have R1 built in.

Oq* is the same as Oq, except that, when computing the
bound on supp(I), the minimum of the R1 bound and the
Oq bound is used. Thus Oq* has both the R1 and Oq built in.

6. EXPERIMENTS
We now report on experiments we performed which use the heuris-
tics discussed above. We emphasize that our ideas are not specific
to the Apriori algorithm but rather target FIM algorithms in general.

Experimental setup
We used Ferenc Bodon’s implementation of the Apriori algorithm
[3], and extended it to include the heuristics in two places as dis-
cussed in Section 5. For FIM heuristics, we only use the 3-rule
enumerated from our bounding theorem instead of the 1-rule. We
assume that, in a pre-processing procedure, the frequencies of the
items in I have been computed and sorted. For the bounding rules
heuristics, we use H3, O3 and O3* (recall that O3* is the best of
R1 and O3). These heuristics take place when generating and test-
ing candidates. Figure 1 shows the test-candidate functions which
incorporated the R3 and O3 heuristics, respectively. (The function
incorporating H3 is very similar to O3. H3 looks up the supports of
every K such that |K| = |I| − 3). Notice that only pre-candidates
are subjected to these various rules. This means that in all cases the
item-sets have been subjected to the most important part of the R1
rule, namely we know that the sets I − {i1}, and I − {i2} are fre-
quent (where i1 and i2 are the first and second most frequent items).
This reduces the possibility of the 3-rule from being effective.

Baskets databases
We ran experiments on chess data, and census data (PUMS) which
were provided by Roberto Bayardo from the UCI baskets databases
[11]. Finally, we ran our approaches on webdocs - a 1.5GB baskets
database donated by Claudio Lucchese, Salvatore Orlando, Raf-
faele Perego, and Fabrizio Silvestri to the FIMI repository [10]
and built from a spidered collection of web html documents. Ta-
ble 2 provides the essential statistics of baskets databases involved.
Pumsb∗ is the same baskets database as pumsb minus all the items
with 80% or more frequency.

Experiments were run on a 3.06Ghz Intel Xeon system with 4GB
of memory running RedHat Enterprise Linux. We ran three types
of experiments describe below; the results are shown in Tables 3–
6 and Appendix A. In all these experiments, we do not include

52



Table 2: Statistics of the baskets databases sizes
Baskets Database Baskets Avg. Basket Length Distinct Items
chess 3,196 37 76
pumsb 49,046 74 7117
pumsb∗ 49,046 50 7117
webdocs 1,692,082 177 5,267,657

Table 3: chess results at 50% threshold
Exp1: Exp2:

Set Freq Wasted effort Derivable items
size Pre-cand. item-sets R1 O3 O3* R3 R1=O2 O3=O2 O3*=O2

3 4,504 4,000 503 69 69 69 366 1,560 1,729
4 19,847 18,565 1,198 55 55 11 3,442 11,741 12,029
5 60,960 58,172 2,408 54 48 0 18,089 45,576 46,408
6 134,191 129,952 3,468 34 29 0 57,633 115,407 116,670
7 218,411 214,297 3,347 18 17 0 122,979 204,138 205,167

Table 4: PUMSB results at 80% threshold
Exp1: Exp2:

Set Freq Wasted effort Derivable items
size Pre-cand. item-sets R1 O3 O3* R3 R1=O2 O3=O2 O3*=O2

3 1,842 1,760 82 3 3 3 252 99 340
4 7,668 6,999 566 8 8 2 906 1,475 1,584
5 20,458 18,215 1,733 8 4 0 2,613 4,834 5,229
6 35,717 31,532 2,873 20 17 0 6,177 10,235 11,659
7 41,290 36,382 2,666 13 1 0 11,016 13,653 16,612

Table 5: PUMSB∗ results at 25% threshold
Exp1: Exp2:

Set Freq Wasted effort Derivable items
size Pre-cand. item-sets R1 O3 O3* R3 R1=O2 O3=O2 O3*=O2

3 8,817 6,106 2,551 1,051 1,051 1,051 1,172 112 1,231
4 27,436 23,331 829 286 286 119 8,710 6,218 9,771
5 72,715 65,625 432 196 52 5 33,441 30,191 37,115
6 155,887 142,594 280 281 35 0 85,187 79,353 91,110
7 267,801 245,939 171 452 13 0 160,024 147,127 165,838

Table 6: webdocs results at 10% threshold
Exp1: Exp2:

Set Freq Wasted effort Derivable items
size Pre-cand. item-sets R1 O3 O3* R3 R1=O2 O3=O2 O3*=O2

3 26,125 12,343 13,711 13,711 13,711 13,711 0 0 0
4 40,619 31,857 8,480 8,361 8,345 8,345 0 0 0
5 57,336 52,084 5,011 3,135 3,130 2,919 0 0 0
6 58,560 55,867 2,346 739 739 565 0 50 50
7 40,057 39,299 650 160 160 101 36 787 810
8 17,828 17,710 109 109 18 8 80 2,266 2,280

53



results for H3 since it produced identical results to O3 except in
one instance.

Exp1 (See Tables 3–6.) In this experiment, we use the 3-rule as
an FIM heuristic and use it to prune the search space. The
idea is for every item-set we compute the upper bound using
R3, O3 or O3* instead of the 1-rule, and count the number
of candidates that the rules report as possibly frequent, yet,
when counting them in the basket database, turn out to be
infrequent (i.e. wasted effort).

Exp2 (See Tables 3–6.) We count the number of derivable item-
sets [6] that have their lower bound and upper bound equal.
We also present below this data, the remaining candidates
that need to be counted as a percentage of the pre-candidates.
We computed the upper bound on the support of an item-
set using R1, O3, O3* and R3 with the lower bound being
computed using O2. This experiment is interesting since for
the item-sets that have their upper bounds and lower bounds
equal, one does not need to count their supports.

Exp3 (See Appendix A.) We modify Exp1 by using the lower
bound rule (O2 heuristic) to further prune the search space.
The idea is that, if the lower bound is greater than the thresh-
old, then we know that item-set is frequent without counting.
Thus, in this experiment we only report the number of can-
didates that require counting. These are the item-sets whose
lower bound is below the threshold and their upper bound is
above the threshold. Note that when implementing this al-
gorithm one may reach a stage where the supports of subsets
of an item-set are not available (since the frequency status of
these subsets may have been determined without counting)
[11]. We do not address this issue.

Interpretation of results
From the data presented in Tables 3–4, it is apparent that the 3−rule
prunes the search space and reduces the number of infrequent sets
that need to be counted almost perfectly in Exp1. The 1-rule doing
a good job in eliminating the infrequent item-sets but the 3-rule is
doing an almost perfect job. This is consistent with our theoretical
results in Section 4, which predict that the 3-rule will do better on
dense baskets databases. The other observation deals with the per-
formance of our proposed heuristics: O3 prunes the search space
and reduces wasted effort almost as good as O3* and R3 in Exp1.
In Tables 3–4 of Exp2 we find more derivable item-sets when com-
puting the lower and bounds using the O2 and O3 than using O2
and R1. The number of derivable items found using O3 and O3*
(in conjunction with the lower bound) is very close to the num-
ber of derivable items found using R3 with the lower bound. This
demonstrates the performance of our proposed approaches. In Ap-
pendix A in Exp3 we find that the remaining candidates that need
to be counted after using O3 (or O3*) and O2 to prune the search
space is: (1) noticeably less than those remaining candidates that
need to be counted after using only R1 and O2; (2) very close to
those remaining candidates that need to be counted after using R3
and O2 (the best).

For the data presented in Tables 5–6 of Exp1, computing the upper
bound using 3-rule with R3 is still reducing wasted effort more than
the 1-rule. However the pruning relative effectiveness of these rules
is less as can be clearly seen when comparing O3 to R1 in Table 6.
Observe there exists an outlier in our results in Table 5 where O3

does slightly worse than the 1-rule at stage 7 of the algorithm. We
do not see this as a major problem since it is not observed in O3*.
The decrease in pruning effectiveness of these rules can also be ob-
served in Table 6 of Exp2, where all rules are unsuccessful in both
pruning wasted effort and finding derivable item-sets in the early
stages of the algorithm. More importantly, we observe that the use
of R1 and O2 to find derivable item-sets is more effective than using
O3 and O2 (Observe this does not occur in O3* or R3 with O2 since
both these approaches have R1 built into them). This is consistent
with our theoretical results in Section 4, which predict the 1-rule be
more effective than the 3-rule on sparse baskets databases. We also
observe a similar reduction in pruning effectiveness in Appendix A
of Exp3 where we find the remaining candidates that need to be
counted using either of O3, O3* or R3 (in conjunction with O2)
very close to those candidates that need to be counted using R1 (in
conjunction with O2).

7. SUMMARY
• The computational cost of computing a particular bound is

equivalent to finding a K such that
P
K⊆J⊆I−K d(U) is

minimized and then computing the bound B(K, I − K).
While the cost of computing B(K, I − K) is the same for
each heuristic, the cost of finding a K-set such that the sum
over density is minimized can be reduced significantly by us-
ing the heuristics we propose in this paper.

• The performance of the approaches suggests that all algo-
rithms produce more or less the same number of false candi-
dates, with O3 typically performing better.

• For dense baskets databases, O3 and O3* produce less false
candidates than R1, and thus resulting in better performance.
For baskets databases too big to fit in memory, it is desirable
to avoid false candidates as much as possible. O3 (or O3*)
will perform better since the computational cost of O3 (in
memory) will usually outperform the cost of false candidates
(since that involves I/O access).

• The heuristics we suggest will work for both lower bounds
and upper bounds. This will have a positive impact on per-
formance of algorithms like MAXMINER and AprioriLB
[11], and concise representation algorithms such as the NDI-
Algorithm [6].

• We recommend that one may just as well run the 3-rule in the
Apriori algorithm, at least at level 3. This does not present a
significant overhead. The advantages are that for dense bas-
kets databases, it will pay off reducing wasted effort to al-
most 0. Furthermore, even on sparse baskets databases such
as webdocs, a reduction in wasted effort can be expected.

Acknowledgment: We thank Ferenc Bodon for use of his imple-
mentation of the Apriori algorithm [3].

8. REFERENCES
[1] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. Mining

association rules between sets of items in large databases. In
Proceedings of the 1993 ACM SIGMOD international conference on
Management of data, pages 207–216. ACM Press, 1993.

[2] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for
mining association rules. In Proc. 20th Int. Conf. Very Large Data
Bases, VLDB, pages 487–499, 1994.

54



[3] Ferenc Bodon. A fast apriori implementation. In Proceedings of the
IEEE ICDM Workshop on Frequent Itemset Mining Implementations,
2003.

[4] Toon Calders. Axiomatization and Deduction Rules for the Frequency
of Itemsets. PhD dissertation- University of Antwerp, 2003.

[5] Toon Calders. Computational complexity of itemset frequency
satisfiability. In Proceedings of the twenty-third ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database
systems, pages 143–154, 2004.

[6] Toon Calders and Bart Goethals. Mining all non-derivable frequent
itemsets. In Proceedings European Conference on Principles of Data
Mining and Knowledge Discovery, volume 2431 of LNCS, pages
74–85. Springer-Verlag, 2002.

[7] Toon Calders and Jan Paredaens. Axiomatization of frequent sets. In
Proceedings of the international conference on database theory,
pages 204–218, 2001.

[8] Dimitrios Gunopulos, Heikki Mannila, and Sanjeev Saluja.
Discovering all most specific sentences by randomized algorithms. In
Proceedings of the 6th International Conference on Database
Theory, pages 215–229. Springer-Verlag, 1997.

[9] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns
without candidate generation. In Proceedings of the 2000 ACM
SIGMOD international conference on Management of data, pages
1–12. ACM Press, 2000.

[10] FIMI Repository. http://fimi.cs.helsinki.fi/data.

[11] Jr. Roberto J. Bayardo. Efficiently mining long patterns from
databases. In SIGMOD ’98: Proceedings of the 1998 ACM SIGMOD
international conference on Management of data, pages 85–93. ACM
Press, 1998.

[12] Bassem Sayrafi and Dirk Van Gucht. Inference systems derived from
additive measures. Workshop on Causality and Causal Discovery,
London, Canada, 2004.

[13] Bassem Sayrafi and Dirk Van Gucht. Differential constraints. In
Proceedings of the twenty fourth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems. ACM Press, 2005.

[14] Bassem Sayrafi, Dirk Van Gucht, and Marc Gyssens. Measures in
databases and datamining. Tech. Report TR602, Indiana University
Computer Science, 2004.

[15] Mohammed J. Zaki. Scalable algorithms for association mining.
IEEE Transactions on Knowledge and Data Engineering,
12(3):372–390, 2000.

APPENDIX
A. LOWER BOUND RESULTS
We present some results from combining the 2−rule (denoted by
LB in the tables below) with R1 and O3. Remaining candidates
refers to the candidate sets that remain after pruning the search
space using the rules noted. It is only for these sets that we are
required to visit the database and count their support. Observe in
the chess and PUMSB results, that the number of remaining candi-
dates is reduced significantly when computing the lower and upper
bounds using O2 and O3 versus O2 and the 1-rule. On the other
baskets databases (sparse baskets databases), we observe that the
same effect only on a smaller scale.

chess results at 50% support
Remaining candidates

Set size Pre-cand. Freq LB + R1 LB + O3 LB+O3*
3 4,504 4,000 596 162 162
4 19,847 18,565 1,388 245 245
5 60,960 58,172 2,716 356 356
6 134,191 129,952 3,763 324 324
7 218,411 214,297 3,539 209 209

PUMSB results at 80% support
Remaining candidates

Set size Pre-cand. Freq LB + R1 LB + O3 LB+O3*
3 1,842 1,760 97 18 18
4 7,668 6,999 622 64 64
5 20,458 18,215 1,917 192 188
6 35,717 31,532 3,445 592 589
7 41,290 36,382 3,635 982 970

PUMSB∗ results at 25% support
Remaining candidates

Set size Pre-cand. Freq LB + R1 LB + O3 LB+O3*
3 8,817 6,106 3,967 2,467 2,467
4 27,436 23,331 3,008 2,465 2,465
5 72,715 65,625 4,046 3,810 3,666
6 155,887 142,594 5,941 5,942 5,696
7 267,801 245,939 7,849 8,130 7,691

webdocs results at 10% support
Remaining candidates

Set size Pre-cand. Freq LB + R1 LB + O3 LB+O3*
3 26,125 12,343 19,422 19,422 19,422
4 40,619 31,857 12,743 12,624 12,608
5 57,336 52,084 7,177 5,301 5,296
6 58,560 55,867 3,207 1,600 1,600
7 40,057 39,299 858 368 368
8 17,828 17,710 125 34 34

55


