
MoSS: A Program for Molecular Substructure Mining

Christian Borgelt
Dept. of Knowledge Processing

and Language Engineering
University of Magdeburg

Universitätsplatz 2,
39106 Magdeburg, Germany

borgelt@iws.cs.uni-
magdeburg.de

Thorsten Meinl
Computer Science

Department 2
University of Erlangen-Nuremberg

Martenstraße 3,
91058 Erlangen, Germany

meinl@cs.fau.de

Michael Berthold
Dept. of Computer and

Information Science
University of Konstanz

78457 Konstanz, Germany

berthold@inf.uni-
konstanz.de

ABSTRACT
Molecular substructure mining is currently an intensively
studied research area. In this paper we present an implemen-
tation of an algorithm for finding frequent substructures in
a set of molecules, which may also be used to find substruc-
tures that discriminate well between a focus and a comple-
ment group. In addition to the basic algorithm, we discuss
advanced pruning techniques, demonstrating their effective-
ness with experiments on two publicly available molecular
data sets, and briefly mention some other extensions.

1. INTRODUCTION
A frequent task in biochemistry is the search for common
features in large sets of molecules. Examples are drug dis-
covery, where one is interested in identifying properties
shared by molecules that have been classified as “active”
(and rarely shared by those classified as “inactive”) w.r.t.,
for example, the protection of human cells against a virus,
and compound synthesis, where one tries to identify proper-
ties that enable or inhibit the synthesis of new molecules, so
that one can predict the chances for a successful synthesis.

Since the features one may use to describe molecules are
manifold, there are approaches in abundance, ranging from
simple one-dimensional measurements to complex thousand-
dimensional descriptors. The molecular weight and the num-
ber of hydrogen donors or acceptors are examples of simple
features. More complex ones include binary vectors, which
can be several thousand bits long with each bit representing
a specific constellation of atoms like aromatic rings or amino
groups, as well as shape descriptors that try to capture ge-
ometric properties of a molecule.

In this paper we focus on an approach that models molecules
as attributed graphs, thus taking the connection structure,

though not the 3-dimensional structure into account. The
resulting set of graphs is then searched for common sub-
graphs, that is, molecular fragments that appear with a
user-specified minimum frequency. For this approach sev-
eral algorithms have been proposed recently, with many of
them based on methods developed for association rule min-
ing. In particular, the Apriori algorithm [1] and the Eclat
algorithm [21] are taken as starting points. The general
ideas of these algorithms can be transferred to molecular
substructure mining, even though the fact that the input
consists of graphs instead of sets poses some problems. Ex-
amples of algorithms developed in this way are Subdue [5],
MolFea [12], FSG [13], MoFa [2], gSpan [20], FFSM [9], and
Gaston [16]. Other approaches rely, for instance, on princi-
ples from inductive logic programming [6] and describe the
graph structure by logical expressions.

Of course, all of the mentioned approaches are generally
applicable to attributed graphs, with molecules being only
one specific application example. However, the Java im-
plementation discussed in this paper is geared to molecules
as it supports reading molecules in standard description lan-
guages like SMILES (Daylight, Inc.) and SLN (Tripos, Inc.).
It also has to be mentioned that the first version of the
presented program was developed in cooperation with the
biochemical software company Tripos, Inc., St. Louis, MO,
USA. Finally, it should be noted that the algorithm de-
scribed here is also known as MoFa (Molecular Fragment
miner). The Java program presented here, however, is called
MoSS (Molecular SubStructure miner) in order to distin-
guish it from other implementations.

2. BASIC ALGORITHM
In order to capture the bond structure of molecules, we
model them as attributed graphs, in which each vertex rep-
resents an atom and each edge a bond between atoms. Each
vertex carries attributes that indicate the atom type (i.e.,
the chemical element), a possible charge, and whether it is
part of an aromatic ring. Each edge carries an attribute that
indicates the bond type (single, double, triple, or aromatic).

Our goal is to find substructures that have a certain min-
imum support in a given set of molecules, i.e., are part of
at least a certain percentage of the molecules. However, in
order to restrict the search space, we usually consider only

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OSDM’05, August 21, 2005, Chicago, Illinois, USA.
Copyright 2005 ACM 1-59593-210-0/05/08 ...$5.00.

6

connected substructures, i.e., graphs having only one con-
nected component. For most applications, this restriction
is harmless, because connected substructures are most often
exactly what is desired. (Note, however, that the program
considered here also allows for starting from a disconnected
core structure, though not for extending a substructure by
an unconnected atom.) We do not constrain the connectiv-
ity of the graph in any other way: The graphs may be chains
or trees or may contain an arbitrary number of cycles.

2.1 Search Tree Traversal
Most naturally, the search is carried out by traversing a tree
of fragments of molecules, similar to the tree of item sets that
is traversed in frequent item set mining. The root of the tree
is a core structure to start from, which for now we assume to
be a single atom (more complex cores are discussed below).
Going down one level in the search tree means to extend a
substructure by a bond (and maybe an atom, if the bond
does not close a ring), just like going down in an item set
tree means adding an item to an item set. That is, with a
single atom at the root of the tree, the root level contains
the substructures with no bonds, the second level those with
one bond, the third level those with two bonds and so on.

There are basically two ways in which such a search tree can
be traversed: We can use either a breadth first search and
explicit subset tests (like Apriori) or a depth first search and
intersections of transaction lists (like Eclat). For our task
the Eclat approach seems preferable, because the Apriori
approach has certain drawbacks: even subset tests can be
costly, but substructure tests, which consist mathematically
in checking whether a given attributed graph is a subgraph
of another attributed graph, can be extremely costly. Fur-
thermore, the number of small substructures (1 to 4 atoms)
can be enormous, so that even storing only the topmost lev-
els of the tree can require a prohibitively large amount of
memory. Of course, the Eclat approach also has its draw-
backs, for example, the transaction lists are now lists of em-
beddings of a substructure into the given molecules. Since
there can be several embeddings of the same substructure
into one molecule, these lists tend to get fairly long. This
drawback can make it necessary to start from a reasonably
sized core structure (see below).

To be more specific, our algorithm searches as follows: The
given core structure is embedded into all molecules, resulting
in a list of embeddings. Each embedding consists of refer-
ences into a molecule that point out the atoms and bonds
that form the substructure. Remember that a list of embed-
dings may contain several embeddings for the same molecule
if the molecule contains the substructure in more than one
place or if the substructure is symmetric. In a second step
each embedding is extended in every possible way. This
is done by adding all bonds in the corresponding molecule
that start from an atom already in the embedding (to en-
sure connectedness and, of course, to reduce the number of
bonds that have to be considered). This may or may not in-
volve adding the atom the bond leads to, because this atom
may or may not be part of the embedding already. More
technically, by following the references of an embedding the
atoms and bonds of the corresponding molecule are marked
and only unmarked bonds emanating from marked atoms
are considered as possible extensions.

The resulting extended embeddings are then sorted into
equivalence classes, each of which represents a new substruc-
ture. This sorting is very simple, because only the added
bond and maybe the added atom have to be compared. In
our implementation we use a sorted array of lists of em-
beddings to group the extensions. After all extended em-
beddings have been processed, each array element contains
the list of embeddings of a new substructure. Each of these
new substructures corresponds to a child node in the search
tree, each of which is then processed in turn by searching
recursively on the list of embeddings corresponding to it.

2.2 Basic Search Tree Pruning
Of course, subtrees of the search tree can be pruned if they
refer to substructures not having enough support, i.e., if too
few molecules are referred to in the associated list of em-
beddings. We call this support based pruning. We may also
prune the search tree if a user-defined threshold for the num-
ber of atoms in a fragment has been reached. We call this
size based pruning. However, the most important pruning
type is structural pruning, which is meant to ensure that
each substructure is considered only once in the search tree.
In frequent item set mining such structural pruning can eas-
ily be achieved by drawing on an (arbitrary, but fixed) order
of the items and disallowing extensions by items preceding
the item added last to the set (cf. [3] for more details).

In molecular substructure mining, however, such an approach
is impossible, since there is no possible global order of, say,
the atoms, as we have to take the bond structure into ac-
count. However, we can number the atoms in a substructure
and record how a substructure was constructed in order to
constrain its extensions. The number we assign to an atom
reflects the step in which it was added. That is, the core
atom is numbered 0, the atom added with the first bond is
numbered 1 and so on. Note that this number does not tell
anything about the type of the atom, as two completely dif-
ferent atoms may receive the same number, simply because
they were added in the same step.

Whenever an embedding is extended, we record in the re-
sulting extension the number of the atom from which the
added bond started. When the extended embedding is to
be extended itself, we consider only bonds that start from
atoms having numbers no less than this recorded number.
That is, only the atom extended in the preceding step and
atoms added later than this atom can be the starting point
of a new bond. This rule is directly analogous to the rule
that only items following the item added last may be added
to an item set. With this simple scheme we immediately
avoid that two bonds, call them A and B, which start from
different atoms, are added in the order A, B in one branch
of the search tree and in the order B, A in another. Since
either the atom A starts from or the atom B starts from
must have a smaller number, one of the orders is ruled out.

However, two or more bonds can start from the same atom.
Therefore we also have to define an order on bonds, so that
we do not add two different bonds A and B that start from
the same atom in the order A, B in one branch of the search
tree and in the order B, A in another. This order on bonds
is, of course, arbitrary. In our implementation, single bonds
precede aromatic bonds, which precede double bonds, which

7

a)

C C S N
O

O b)
C C S N

C

O c)
C S N

C

O

d)
C C S N

N e)
C S N

N f)
C S O

N

Figure 1: A set of six example molecules.

a
1

b
1

c
1

d
1

e
1

f
1

a
1

b
2

c
2

d
1

e
1

f
1

a
1

b
1

c
1

d
1

e
1

f
0

a
2

b
1

c
1

d
0

e
0

f
1

a
0

b
0

c
0

d
1

e
1

f
1

a
0

b
2

c
2

d
0

e
0

f
0

a
1

b
2

c
2

d
1

e
1

f
0

a
2

b
2

c
2

d
0

e
0

f
1

a
0

b
0

c
0

d
1

e
1

f
1

a
1

b
1

c
0

d
1

e
0

f
0

a
2

b
1

c
1

d
0

e
0

f
0

a
0

b
0

c
0

d
1

e
1

f
0

a
2

b
0

c
0

d
0

e
0

f
0

a
0

b
0

c
0

d
0

e
0

f
1

a
2

b
2

c
2

d
0

e
0

f
0

a
0

b
0

c
0

d
1

e
1

f
0

a
1

b
1

c
0

d
1

e
0

f
0

a
2

b
0

c
0

d
0

e
0

f
0

a
0

b
0

c
0

d
0

e
0

f
1

a
2

b
1

c
0

d
0

e
0

f
0

a
0

b
0

c
0

d
1

e
0

f
0

a
2

b
0

c
0

d
0

e
0

f
0

a
2

b
0

c
0

d
0

e
0

f
0

a
2

b
1

c
0

d
0

e
0

f
0

S

S C S N S O S N

C S C C S N C S O C S N C C S O S N N S N O S O O S N

C S N
O

C S N
N

C C S
N

C S O
O

C S O
N

C C S
O

C C S
N

O S N
O

C S N
O

O
C C S

N

O Figure 2: The search tree for the six
molecule example. The tables below
the fragments indicate the numbers
of embeddings per molecule.

precede triple bonds. Finally, within extensions by bonds of
the same type starting from the same atom, the order is
determined by (1) whether the atom the bond leads to is
already in the substructure or not and (2) the type of this
atom. To take care of the bond type etc., we record in each
embedding which bond was added last.

As a final rule, we disallow extensions by bonds leading to
an atom already in the substructure if the number of the
destination atom is higher than the number of the source
atom. All bonds leading to already captured atoms (that is,
all bonds closing rings) must lead “backward”, that is, from
an atom with a higher number to an atom with a lower one.

The above rules provide us with a structural pruning scheme,
but unfortunately this scheme is not perfect and making it
perfect would be very expensive computationally. The prob-
lem is that we do not have any precedence rule for two bonds
of the same type starting from an atom with the same num-
ber and leading to atoms of the same type, and that it is
not possible to give any precedence rule for this case that is
based exclusively on locally available information. We con-
sider the problems that result from this imperfection and our
solution below, but think it advisable to precede this con-
sideration by an illustrative example of the search process
as we defined it up to now.

2.3 An Illustrative Example
As an illustration we consider how our algorithm finds the
frequent substructures of the six example molecules shown
in Figure 11, starting from a sulfur atom. We use a minimum
support of 50%, i.e., a substructure must occur in at least
three of the six molecules to qualify as frequent.

1Please note that these structures were made up to demon-
strate certain aspects of the search scheme. None of them
has any real (i.e., chemical) meaning.

1)

3 (50%)
C S N

O
2)

3 (50%)
C C S N 3)

5 (83%)
C S N

4)

4 (67%)
C S O 5)

3 (50%)
C S N 6)

6 (100%)
C S

Figure 3: The six frequent substructures that are
found in the order in which they are generated.

First the sulfur atom is embedded into the six molecules.
This results in six embeddings, one for each molecule, which
form the root of the search tree (see Figure 2; the table
in the root node records that there is one embedding for
each molecule). Then the embeddings are extended in all
possible ways, which leads to the four different substructures
shown on the second level (i.e., S C, S N, S O, S N). These
substructures are ordered, from left to right, as they are
considered by our algorithm, i.e., extensions by single bonds
precede extensions by double bonds, and within extensions
by bonds of the same type the element type of the atom a
bond leads to determines the order. Note that there are two
embeddings of S C into both the molecules b and c and two
embeddings of S O into the molecule a.

In the third step the extensions of the substructure S C
are constructed. This leads to the first five substructures
on the third level (i.e., C S C, C S N, C S O, C S N and
C C S). Again the order of these substructures, from left to
right, reflects the order in which they are considered. Since
we search depth first, the next substructure to be extended
is C S C.2 However, this substructure does not have enough
support and therefore the subtree is pruned.

The substructure C S N is considered next etc. However,
we confine ourselves to pointing out situations in which spe-
cific aspects of our method become obvious. Effects of struc-
tural pruning can be seen, for instance, at the fragment
C S N, which does not have a child in which a second car-
bon atom is attached to the sulfur atom. The reason is that
the extension by the bond to the nitrogen atom rules out all
single bonds leading to atoms of a type preceding nitrogen
(like carbon). Similarly, C S N does not have children with
another atom attached to the sulfur atom by a single bond,
not even an oxygen atom, which follows nitrogen in the pe-
riodic table of elements. The reason is that a double bond
succeeds a single bond and thus the extension by the double
bond to the nitrogen atom rules out all single bonds emanat-
ing from the sulfur atom. Finally, the structure C C S has
no children at all, even though it has enough support. The
reason is that in this substructure a bond was added to the
carbon atom adjacent to the sulfur atom. This carbon atom
is numbered 1 and thus no bonds can be added to the sulfur
atom, which has number 0. Only the carbon atoms can be
starting points of a new bond, but there are no such bonds
in the molecules a, b, and d. Note that ruling out extensions
of the sulfur atom in this branch is not harmful, since all
fragments having another atom attached to the sulfur atom
are considered in the subtrees to the left of C C S.

2It may seem strange that there are two embeddings of this
substructure into both the molecules b and c. The reason
for this is explained below.

8

During the recursive search all frequent substructures en-
countered are recorded. The resulting set of six frequent
substructures, together with their absolute and relative sup-
port is shown in Figure 3. Note that C C S is not re-
ported, because it has the same support as its superstructure
C C S N. Likewise, O S N, S N, and S are not reported.
Transferring a common term from frequent item set mining,
we may say that our algorithm reports only closed fragments,
that is, fragments no superstructure of which has the same
support (see also below, Section 3.1).

The example makes it clear that our algorithm can find arbi-
trary substructures, even though it does not show how cyclic
structures are treated. Unfortunately, search trees for cyclic
structures are too big to be depicted here.

2.4 Incomplete Structural Pruning
We indicated above that our structural pruning is not per-
fect. In order to understand the problems that can arise,
consider two molecules A and B with the common substruc-
ture N C S C O. We try to find this substructure starting
from the sulfur atom. Since the two bonds emanating from
the sulfur atom are equivalent, we have no precedence rule
and thus the order in which they are added to an embedding
depends on the order in which they occur in the correspond-
ing molecule (which we have no real control over) .

Suppose that in molecule A the bond going to the left pre-
cedes the bond going to the right, while in molecule B it is
the other way round. As a consequence, in embeddings into
molecule A the left carbon atom will precede the right one,
while in embeddings into molecule B it will be the other way
round. Now consider the substructure C S C and its exten-
sions. In molecule A the carbon numbered 1 (the left one)
will be extended by adding the nitrogen atom and thus the
oxygen atom can be added in the next step (to the carbon
on the right, which is numbered 2), resulting in the full sub-
structure. However, in molecule B the nitrogen atom has to
be added by extending the carbon atom numbered 2 (again
the left one; in embeddings into molecule B the right carbon
is numbered 1). Hence it is not possible to add the oxygen
atom in the next step, because this would mean adding a
bond starting at an atom with a lower number than the atom
extended in the preceding step. Therefore the common sub-
structure is not found. This example also shows that it does
not help to look “one step ahead” to the next atom, because
there could be arbitrarily long equivalent chains, which dif-
fer only at the ends. There are no “local” criteria, which
would enable us to decide how to order and thus number
equivalent extensions of the same atom.

If, however, we accept to reach identical substructures in dif-
ferent branches of the search tree in cases like this, we can
correct the imperfection of our structural pruning. When-
ever we extended an embedding by following a bond, we
allow adding an equivalent bond in the next step, regard-
less of whether it precedes or succeeds, in the correspond-
ing molecule, the bond added in the preceding step. This
relaxation explains why there are two embeddings of the
substructure C-S-C into both the molecules b and c of our
example. In one embedding the left carbon atom is num-
bered 1 and the one at the bottom is numbered 2, while in
the other it is the other way round (cf. Figure 1).

Note that considering the same substructure several times
cannot lead to wrong results, only to multiple reporting of
the same substructure. Multiple reporting, however, can
be suppressed by maintaining a list of frequent substruc-
tures and suppressing new ones that are identical to already
known ones. It is more important that the missing rule for
equivalent bonds can lead to considerable redundant search
in certain structures, especially molecules containing one or
more aromatic rings. (A solution to this is discussed below.)

However, it should be noted that even if we could amend
the weakness of our structural pruning, we would still be
unable to guarantee that each substructure is considered
only once. If, for instance, some substructure X can be em-
bedded twice into some molecules and if there are frequent
substructures that contain both embeddings (and thus X
twice), then these substructures can be grown from either
embedding. If the connection between the two embeddings
of X is not symmetric, the same substructure is reached in
two different branches of the search tree in this case. Obvi-
ously, there is no simple way to avoid such situations.

2.5 Embedding a Core Structure
Up to now we assumed that we start the search from a sin-
gle atom. This usually works fairly well as long as this atom
is rare in the molecules to work on. For example, sulfur
or phosphorus are often good starting points in biochemical
applications, while starting with carbon is a bad idea: Ev-
ery organic molecule contains several carbon atoms, often
twenty or more, and thus we end up with an already very
high number of embeddings of the initial atom. As a conse-
quence, the algorithm is likely to run out of memory before
reaching substructures of reasonable size.

However, if we cannot start from a rare element, it is some-
times possible to specify a core—for instance, an aromatic
ring with one or two side chains—from which the search can
be started. Provided the core structure is specific enough,
there are only few, at best only one embedding per molecule,
so that the list of embeddings is short.

While it is trivial to embed a single atom into a molecule,
embedding a core structure can be much more difficult. In
our implementation we rely on a simple observation: em-
bedding a core structure is the same as finding a common
substructure of the molecule and the core that is as big as
the core itself. This leads to the idea to grow a substruc-
ture into both the core and the molecule until it completely
covers the core. That is, we do a substructure search for
the core and the molecule starting from an arbitrary atom
of the core and requiring a support of 100% (i.e., both the
core and the molecule must contain the substructure). In
addition, we can restrict the search to one embedding of a
substructure into the core at all times, since we know that it
must be completely covered in the end. (For the molecule,
however, we must consider all possible embeddings.)

Note that the same mechanism of growing a substructure
into two molecules can also be used for substructure tests
as they are needed to suppress multiple reporting of the
same fragment (see above) as well as reporting redundant
fragments (fragments that are substructures of some other
fragment and have the same support as this fragment).

9

N C
C

C
O

O
N C

C
C

O

OC
S

N C
C

C
O

OC
O

Figure 4: The amino acids clycin, cystein and serin.

*

S N O C

S C N C O C O C C C

S C C N C C O C C O C O O C C O C O C C C

S C C C S C C N

S C C C
N

S C C C O S C C C O

S C C C O
O

12 7 5

3

Figure 5: The tree
of fragments for the
amino acids example.

2.6 Starting with an Empty Core
Up to now we assumed that we are given a core structure
to start the search from. However, in [7, 8] an extension to
empty cores was suggested. We explain this approach with
a simple example. Figure 4 shows the amino acids clycin,
cystein and serin. The upper part of the tree (or forest if the
empty fragment at the root is removed) that is traversed by
our algorithm for these molecules is shown in Figure 5. The
first level contains individual atoms, the second connected
pairs and so on. The dots indicate subtrees that are not
depicted in order to keep the figure understandable. The
numbers next to these dots state the number of fragments
in these subtrees, indicating the total size of the tree.

The order, in which the atoms on the first level of the tree
are processed, is determined by their frequency of occurrence
in the molecules. The least frequent atom type is considered
first. Therefore the algorithm starts on the left by embed-
ding a sulfur atom into the example molecules. That is,
the molecules are searched for sulfur atoms and their loca-
tions are recorded. In our example there is only one sulfur
atom in cystein, which leads to one embedding of this (one
atom) fragment. This fragment is then extended in the way
described above. Next the subtree rooted at the nitrogen
atom is processed. However, in this subtree extensions by
a bond to a sulfur atom are ruled out, since all fragments
containing a sulfur atom have already been considered in
the tree rooted at the sulfur atom. Similarly, neither sulfur
nor nitrogen are considered in the tree rooted at the oxygen
atom, and the rightmost tree contains fragments that con-
sist of carbon atoms only. The program offers the option to
skip this last tree, because for biochemical molecules it can
be very large and thus may govern the search time.

3. ADVANCED PRUNING
In the preceding section we considered basic search tree
pruning, which is meant to ensure that each substructure
is considered as few times as possible. In this section we
discuss further optimizations, suggested in [14, 4], which
consist in two advanced pruning strategies, namely equiva-

S C N C
O

Cl S C N
O

O S C N
O

Figure 6: Some (fictitious) example molecules.

S

S C S O

O S C S C N S C
O

O S C
O

O S C N S C N
O

O S C N
O

S C N C
O

Figure 7: Search tree for the molecules in Figure 6.

lent sibling pruning and perfect extension pruning. The first
of these optimizations can be applied even if the search is not
restricted to closed fragments (see below), while the second
presupposes that non-closed fragments can be discarded.

3.1 Closed Molecular Fragments
As already mentioned above, the notion of a closed fragment
is derived from the corresponding notion of a closed item
set, which is defined as an item set no superset of which has
the same support, i.e., is contained in the same number of
transactions. Analogously, a closed fragment is a fragment
no superstructure of which has the same support, i.e., is
contained in the same number of molecules. As an example
consider the three example molecules shown in Figure 6 and
the corresponding (unpruned) MoFa search tree (starting
from sulfur as a seed) shown in Figure 7: the closed frag-
ments (for a minimum support of two molecules, i.e., 66%)
in inner nodes are circled. (It should be clear that every leaf
of the search tree is necessarily a closed fragment).

As for item sets, restricting the search for molecular frag-
ments to closed fragments does not lose any information:
all frequent fragments can be constructed from the closed
ones by simply forming all substructures of closed fragments
that are not closed fragments themselves and assigning to
them as their support the maximum of the support values
of those closed fragments of which they are substructures.
Consequently, closed fragment mining is a very convenient
way to reduce the size of the output. In addition, chemists
are usually not interested in all frequent fragments, but only
in the closed ones, presumably because they contain all rel-
evant information without redundancy. Here, however, we
are interested in the fact that in closed fragment mining cer-
tain pruning techniques become applicable, which can speed
up the search considerably. These and other advantages of
closed fragment mining were also studied in [20, 14, 4].

3.2 Equivalent Sibling Pruning
In order to suppress all redundant search, one would have to
check whether any two subtrees of the search tree have the

10

C
C C

C
CC

O C
C C

C
CC

O C C
C C

C
CC

O

O

Figure 8: Three phenols: phenol, p-cresol, and cat-
echol.

C
C C

C
CC

O
0

1 2

3

45

C
C C

C
CC

O
1

2 3

4

50

C
C C

C
CC

O
2

3 4

5

01

C
C C

C
CC

O
1

0 5

4

32

Figure 9: Equivalent extended embeddings.

same fragment as their root (or fragments which only differ
in the restrictions placed on their possible extensions), so
that only one (namely the least restricted one) is actually
searched. Such a general check, however, is costly, because
one would have to store all fragments that have been consid-
ered in the search so far. In addition, one needs an efficient
way of checking whether these stored fragments contain one
that is equivalent to the one currently considered. Finally, it
is difficult to find out whether a subtree to be searched is the
least restricted one appearing in the whole search tree, even
though the depth first traversal applied in our algorithm
always considers the least restricted sibling node first.

However, what can be checked fairly easily is whether two
sibling nodes in the search tree correspond to fragments that
are equivalent (represent the same substructure) and differ
only in the restrictions placed on their possible extensions.
That such a situation can actually occur can be seen from
the example molecules shown in Figure 8. Suppose we start
the search by embedding a benzene ring into these molecules.
Since such a ring exhibits a high symmetry (which is a neces-
sary prerequisite for equivalent siblings), it can be embedded
into each of the molecules in twelve different ways (the ring
can be rotated to six positions and it can be traversed in
two directions). Consider now the extensions of this ben-
zene ring: each of the twelve embeddings is extended by a
bond and an oxygen atom. This leads to twelve new frag-
ments, all of which are equivalent and differ only in the label
of the ring atom that was extended (see Figure 9 for exam-
ples). Obviously it suffices in this situation to consider the
fragment in which the ring atom with the smallest number
was extended. All other fragments must lead to redundant
search, because they allow for a subset of the possible ex-
tensions, but no additional ones.

Since our algorithm considers sibling nodes w.r.t. a local or-
der that is based on the extension information of the parent
fragment (i.e. bond and atom type, number of the atom the
bond is incident to) and processes the least restricted ex-
tensions first, it is fairly easy to implement the described
pruning approach: for each node its preceding sibling nodes
are checked for equivalence and if an equivalent sibling is
found, the current node is skipped.

The equivalence test is carried out as follows: for the frag-
ment corresponding to the current node an arbitrary em-

bedding into an arbitrary molecule is selected. In the corre-
sponding molecule all bonds and atoms belonging to this em-
bedding are marked and all other bonds and atoms are un-
marked. Then all embeddings of the fragment correspond-
ing to a sibling node, which is to be checked for equivalence,
are traversed. For each of these embeddings it is checked
whether it refers only to marked atoms and bonds, that is,
whether it essentially represents the same substructure. If
such an embedding can be found, the two fragments are
equivalent and consequently the current node (the exten-
sions of which are more severely restricted than those of its
already processed sibling) can be skipped.

Note that it suffices to check one molecule, because if there
are identical embeddings into one molecule there must be
identical embeddings into all molecules referred to by the
fragment. As a consequence the check is comparatively
cheap and thus does not degrade performance much even
if the pruning cannot be carried out.

3.3 Perfect Extension Pruning
Perfect extension pruning is based on the observation that
sometimes there is a fairly large common fragment in all
currently considered molecules. As long as the search has
not grown a fragment to this maximal common one, it is not
necessary to branch in the search tree.

From the definition of a closed fragment it is clear that if
there is a common substructure in all currently considered
molecules of which the current fragment is only a part, then
any extension that does not grow the current fragment to-
wards the maximal common one can be postponed until this
maximal common fragment has been reached. The reason
is, obviously, that the maximal common fragment is part
of all closed fragments that can be found in the currently
considered set of molecules. Consequently, it suffices to fol-
low one path in the search tree that leads to this maximal
common fragment and to start branching only from there.

As an example consider again the set of molecules shown in
Figure 6. If the search is seeded with a single sulfur atom,
considering extensions by a single bond starting at the sul-
fur atom and leading to an oxygen atom can be postponed
until the structure S-C-N common to all molecules has been
grown (provided that the extensions of this maximal com-
mon fragment are not restricted in any way—see below).

Technically, the search tree pruning is based on the notion
of a perfect extension. An extension of a fragment, consist-
ing of a bond and possibly an atom (if the bond does not
close a ring), is called perfect if all of its embeddings can be
extended in exactly the same way by this bond and atom
and if it is a bridge3 in all embeddings into the molecules or
if it closes a ring. (Note that there may be multiple ways
of extending an embedding by this bond and atom. In this
case all embeddings must be extendable in the same num-
ber of ways and in all the bond must be a bridge or must
close a ring. The additional condition that the bond has
to be a bridge or must close a ring in all embeddings was
unfortunately not recognized in [4].) If there is a perfect ex-

3A bridge in a graph is an edge that, if removed, splits the
graph into two unconnected parts.

11

S

S C

S C N

O S C N S C N
O

O S C N
O

S C N C
O

S O

O S C S C
O

Figure 10: Search with perfect extension pruning.

tension of a fragment, all closed fragments can, in principle,
be found by searching only the corresponding branch.

There is, however, a minor complication, because perfect ex-
tension pruning interferes with the normal structural prun-
ing done in MoFa. Normal structural pruning prevents ex-
tensions of a fragment by bonds that start from atoms with
smaller numbers than the one extended in the preceding
step. However, a perfect extension should not lead to such
a restriction, because otherwise some search results are lost.

As an example consider again the search tree shown in Fig-
ure 7. If we simply confined the search to the subtree rooted
at the fragment S-C-N, we would lose the fragment O-S-C-N
in the left branch. The reason is that the extension of S-C to
S-C-N, due to the normal structural pruning rules, prevents
an extension of the sulfur atom in this subtree, because an
atom with a higher number, namely the carbon atom, has
been extended in the preceding step.

However, a perfect extension should not restrict possible fu-
ture extensions of the fragment in this way. Therefore the
extension information of a fragment obtained by a perfect
extension are set to those of its parent fragment, bypassing
the normal structural pruning rules. In the considered ex-
ample, this allows us to extend the fragment S-C-N by bonds
starting from the sulfur atom and thus we get the search tree
shown in Figure 10, in which the fragment O-S-C-N is found.

When it comes to implementing perfect extension pruning,
one should bear in mind that checking whether an exten-
sion is perfect by testing the extensions of all embeddings is
costly. Therefore we precede the actual test by cheap tests in
order to, if possible, fail early or succeed early. The ideas un-
derlying these tests are fairly simple: an extension leading to
a fragment cannot be perfect (1) if the number of molecules
referred to by the fragment differs from those referred to by
its parent and (2) if the number of embeddings of the frag-
ment is not an integer multiple of the number of embeddings
of its parent. On the other hand, if these tests do not indi-
cate that the extension is not perfect, we can immediately
conclude that it is perfect if the fragment refers only to one
molecule. The costly test whether each parent embedding
leads to the same number of extended embeddings is, of
course, carried out only if the number of molecules referred
is not equal the number of embeddings (otherwise there is
exactly one embedding per molecule). Only afterwards we

O C S C
N

O C S C N
O

O

C S C

C S C N O C S C

2+2 embs.

1+1 embs. 1+3 embs.

Figure 11: Examples of non-perfect extensions.

N O N O

Figure 12: Perfect exten-
sions may fail in rings.

test whether the bond either closes a ring or is a bridge in
all embeddings. (Bridges are, of course, found and marked
in a preprocessing step, so that the test only has to check
this flag for the bonds referred to by the embeddings.)

Note that it is actually necessary to count the embeddings
per molecule. Checking only whether the total number of
embeddings into all molecules coincides with (or is an integer
multiple of) the parent embeddings does not suffice as can
be seen from the example shown in Figure 11. Even though
the total number of embeddings is the same in the right
branch, the extension is not perfect. The left extension is
not perfect, because the number of extended embeddings,
even though the same for each parent embedding, is reduced
from the number of extensions of its parents. This indicates
that some symmetry has been destroyed by the extension,
which therefore cannot be perfect.

Why it is necessary to constrain perfect extensions to bridges
if the extension does not close a ring can be seen from
the example in Figure 12. Suppose we want to find all
common substructures of these two molecules (minimum
support 100%). We seed the algorithm with a nitrogen
atom. Then adding the oxygen atom is a perfect exten-
sion in the sense that it can be done in the same way in
all molecules. The same holds for a subsequent extension
of the oxygen atom with a carbon atom, or generally, to
walk around the rings in counterclockwise order. This yields
the fragment N O C C C C as the only result. However,
C C N O C C and C C C N O are also common sub-
structures. These we would lose if we allowed such exten-
sions in rings to be considered as perfect.

4. OTHER EXTENSIONS
Apart from the advanced pruning strategies described above,
there are several ways in which the basic algorithm can be
extended, some of which are already incorporated in the
Java implementation referred to here. Due to reasons of
space these extensions are only briefly mentioned here. De-
tails can be found in [2, 7, 8, 14, 15].

4.1 Finding Discriminative Fragments
Our approach to find frequent substructures can easily be
extended to find discriminative fragments, that is, substruc-
tures that are frequent in a predefined subset of the molecules
and infrequent in the complement of this subset. Finding
discriminative fragments requires two parameters: a mini-
mum support for the focus subset and a maximum support
for the complement. The search is carried out in exactly the
same way as described above. The only difference is that two

12

O

F

Figure 13: Example of a
steroid, which can lead to
problems due to the large
number of rings.

Figure 14: Aromatic and Kekulé representations of
benzene.

support numbers are determined: one for the focus subset
and one for the complement. Only the support in the focus
subset is used to prune the search tree. The support in the
complement determines whether a frequent substructure is
recorded or not, thus filtering out substructures that do not
satisfy the requirements for a discriminative structure.

4.2 Rings
An unpleasant problem of the search algorithm as we pre-
sented it up to now is that the local ordering rules for sup-
pressing redundant searches are not complete. Two exten-
sions by identical bonds leading to identical atoms cannot
be ordered based on locally available information alone (see
above). As a consequence, a certain amount of redundant
search has to be accepted in this case, because otherwise in-
correct support values would be computed and it could not
be guaranteed that all frequent substructures are found.

Unfortunately, situations leading to such redundant search
occur almost always in molecules with rings, whenever the
fragment extension process enters a ring. Consequently,
molecules with a lot of rings, like the steroid shown in Fig-
ure 13—despite all clever search tree pruning—still lead to
a prohibitively high search complexity.

To cope with this problem, we added an (optional) pre-
processing step to the algorithm, in which the rings of the
molecules are found and marked. The implementation de-
scribed here offers the possibility to specify a range for the
ring size, so that this feature can be restricted to chemically
meaningful rings, for example, of size 5 and 6. In the search
process itself, whenever an extension adds a bond to a frag-
ment that is part of a ring, not only this bond, but the whole
ring is added (all bonds and atoms of the ring are added in
one step). As a consequence, the depth of the search tree
is reduced (the basic algorithm needs five or six levels to
construct a ring bond by bond) and many of the redundant
searches of the basic algorithm are avoided, which leads to
enormous speed-ups. Details can be found in [7, 8].

Besides a considerable reduction of the running time, treat-
ing rings as units when extending fragments has other ad-
vantages as well. In the first place, it makes a special treat-
ment of atoms and bonds in rings possible, which is es-
pecially important for aromatic rings. For example, ben-
zene can be represented in different ways as shown in Fig-
ure 14. On the left, all six bonds are represented as aro-
matic bonds, while the other two representations—called

pruning # nodes # frags. # embs.

neither 48762 48762 78209
equivalent sibling 22423 23122 38475
perfect extension 4355 6581 16731
both 1577 2947 7786

Table 1: Effects of pruning on the steroids data set.

Kekulé structures—use alternating single and double bonds.
A chemist, however, considers all three representations as
equivalent. With the basic algorithm this is not possible,
because it would require treating single, double, and aro-
matic bonds alike, which obviously leads to undesired side
effects. By treating rings as units, however, these special
types of rings can be identified in the preprocessing step
and then be transformed into a standard aromatic ring.

4.3 Variable Length Chains
Often the exact length of a carbon chain in a molecule is
not important, as long as it is within a certain range. In
this case, the fragment may contain only an indication of
a chain, which match a certain number of chained carbon
atoms in a molecule, where the number may differ for differ-
ent molecules. This type of imprecise match can be handled
in a similar way as the ring extension we studied in the pre-
vious section: Instead of bond by bond, a carbon chain is
added in one step, allowing for different lengths. The im-
plementation described here offers this possibility, but does
not yet take a range for the acceptable lengths of the chain.

4.4 Wildcard Atoms
In principle it is possible to extend the search algorithm
to handle wildcard atoms, which may match any atom in
a user-defined group of atoms. Details can be found in [7,
8]. This possibility is available in a sibling implementation
of the algorithm described here. This implementation is,
however, property of Tripos, Inc., and thus cannot be made
available. The Java implementation described here currently
lacks this capability.

5. EXPERIMENTAL RESULTS
In our experiments we restrict ourselves to demonstrating
the effects of the two advanced pruning approaches described
above. We carried out experiments on three data sets, all of
which are publicly available. The first is a very small data
set consisting of 17 steroid molecules.4 The effects of the
two pruning methods are shown in Table 1 (all experiments
were carried out with a minimum support of one molecule).
As can be seen, both pruning methods have considerable
effects, with those of perfect extension pruning being much
more pronounced. However, this is presumable due to the
very low minimum support, which makes perfect extension
pruning highly effective. At higher support values equivalent
sibling pruning seems to be more effective (see below).

In a second test we ran the program on the well-known HIV
data set available from the National Cancer Institute [10].
This library contains about 44,000 molecules tested for their
activity against the HI-virus, which are grouped into three

4See Section 7 below for a download URL.

13

0.5 1 1.5 2 2.5 3

100

200

300

log(time/s) over support

Figure 15: Execution times on NCI’s HIV data.

0.5 1 1.5 2 2.5 3
0

200

400

600
log(time/s) over support

Figure 16: Numbers of nodes on NCI’s HIV data.

classes: about 400 belong to class CA (confirmed active),
about 1000 to CM (confirmed medium active) and the rest
belongs to CI (confirmed inactive). In the experiments we
report here, however, we neglected these class assignments
and tried to find common substructures of all molecules at
minimum support thresholds ranging from 0.7 to 3%. In
addition, we tested on the IC93 data set [11]. For all exper-
iments we used a Pentium 4C 2.6GHz system with 1GB of
main memory running S.u.S.E. Linux 9.3 and Java 1.5.0.

Results on the NIC’s HIV data are shown in Figures 15 and
16. These results were obtained with activated ring mining
for rings of size 5 and 6. Results on the IC93 data are shown
in Figures 17 and 18 and were obtained without ring mining.
The former figure of each pair (i.e., 15 and 17) shows the
execution time in seconds, the latter (i.e., 16 and 18) the
number of search tree nodes (in thousands) over the mini-
mum support in percent. Solid grey lines refer to the basic
algorithm with neither of the two advanced pruning strate-
gies. The dashed grey line refers to the results for equivalent
sibling pruning only, the dotted grey line to the results with
perfect extension pruning only. Finally, the black line shows
the results obtained with both pruning methods activated.

As can be seen from Figures 15 and 16, equivalent sibling
pruning yields the highest gains for the HIV data set, while
perfect extension pruning yields only fairly small gains. On
the IC93 data the picture is reversed: perfect extension
pruning is more effective. However, both methods yield con-
siderable gains, which add nicely when both pruning strate-
gies are activated. It is interesting to note that the effects
of perfect extension pruning are more pronounced for the

3 3.5 4 4.5 5 5.5 6

50

100

150

200 log(time/s) over support

Figure 17: Execution times on the IC93 data.

3 3.5 4 4.5 5 5.5 6
0

500

1000

log(time/s) over support

Figure 18: Numbers of nodes on the IC93 data.

number of nodes (see Figure 18), which indicates that part
of the gains resulting from this pruning type are eaten up
by the somewhat costly test for a perfect extension.

6. CONCLUSIONS
In this paper we presented a Java implementation of an effi-
cient graph substructure mining algorithm that finds closed
frequent fragments of molecules. The algorithm is based on
a depth first search in a tree of substructures, in which lists
of embeddings into the set of molecules are processed and
extended. The core ingredients of the approach, which make
it efficient, are a structural pruning scheme, which tries to
minimize the number of times a fragment is considered in the
search, and two advanced pruning techniques, which speed
up the search considerably. In addition, the implementation
offers other extensions, like ring and chain mining, which
make it very useful for biochemical applications.

7. PROGRAM
The implementation of the molecular substructure mining
algorithm described in this paper (executable Java archive
as well as the source code, distributed under the LGPL) can
be downloaded free of charge at

http://fuzzy.cs.uni-magdeburg.de/˜borgelt/software.html

Explanations of how to apply the program can be found at

http://www.inf.uni-konstanz.de/bioml/projects/mofa/

It takes a simple set of 17 steroids (also used above) as an
example, which can also be retrieved from the above URLs.

14

8. REFERENCES
[1] R. Agrawal, T. Imielienski, and A. Swami. Mining

Association Rules between Sets of Items in Large
Databases. Proc. Conf. on Management of Data,
207–216. ACM Press, New York, NY, USA 1993

[2] C. Borgelt and M.R. Berthold. Mining Molecular
Fragments: Finding Relevant Substructures of
Molecules. Proc. IEEE Int. Conf. on Data Mining
(ICDM 2002, Maebashi, Japan), 51–58. IEEE Press,
Piscataway, NJ, USA 2002

[3] C. Borgelt. Efficient Implementations of Apriori and
Eclat. Proc. 1st IEEE ICDM Workshop on Frequent
Item Set Mining Implementations (FIMI 2003,
Melbourne, FL). CEUR Workshop Proceedings 90,
Aachen, Germany 2003.
http://www.ceur-ws.org/Vol-90/

[4] C. Borgelt, T. Meinl, and M.R. Berthold. Advanced
Pruning Strategies to Speed Up Mining Closed
Molecular Fragments. Proc. IEEE Conf. on Systems,
Man and Cybernetics (SMC 2004, The Hague,
Netherlands), CD-ROM. IEEE Press, Piscataway, NJ,
USA 2004

[5] D.J. Cook and L.B. Holder. Graph-Based Data
Mining. IEEE Trans. on Intelligent Systems
15(2):32–41. IEEE Press, Piscataway, NJ, USA 2000

[6] P.W. Finn, S. Muggleton, D. Page, and A. Srinivasan.
Pharmacore Discovery Using the Inductive Logic
Programming System PROGOL. Machine Learning,
30(2-3):241–270. Kluwer, Amsterdam, Netherlands
1998

[7] H. Hofer, C. Borgelt, and M.R. Berthold. Large Scale
Mining of Molecular Fragments with Wildcards. Proc.
5th Int. Symposium on Intelligent Data Analysis (IDA
2003, Berlin, Germany), LNCS 2810:380–389.
Springer-Verlag, Heidelberg, Germany 2003

[8] H. Hofer, C. Borgelt, and M.R. Berthold. Large Scale
Mining of Molecular Fragments with Wildcards.
Intelligent Data Analysis 8:495–504. IOS Press,
Amsterdam, Netherlands 2004

[9] J. Huan, W. Wang, and J. Prins. Efficient Mining of
Frequent Subgraphs in the Presence of Isomorphism.
Proc. 3rd IEEE Int. Conf. on Data Mining (ICDM
2003, Melbourne, FL), 549–552. IEEE Press,
Piscataway, NJ, USA 2003

[10] HIV Antiviral Screen. National Cancer Institute.
http://dtp.nci.nih.gov/docs/aids/aids data.html

[11] Index Chemicus — Subset from 1993. Institute of
Scientific Information, Inc. (ISI). Thomson Scientific,
Philadelphia, PA, USA 1993

[12] S. Kramer, L. de Raedt, and C. Helma. Molecular
Feature Mining in HIV Data. Proc. 7th ACM
SIGKDD Int. Conf. on Knowledge Discovery and
Data Mining (KDD 2001, San Francisco, CA),
136–143. ACM Press, New York, NY, USA 2001

[13] M. Kuramochi and G. Karypis. Frequent Subgraph
Discovery. Proc. 1st IEEE Int. Conf. on Data Mining
(ICDM 2001, San Jose, CA), 313–320. IEEE Press,
Piscataway, NJ, USA 2001

[14] T. Meinl, C. Borgelt, and M.R. Berthold.
Discriminative Closed Fragment Mining and Perfect
Extensions in MoFa. Proc. 2nd Starting AI
Researchers’ Symposium (STAIRS 2004, Valencia,
Spain), 3–14. IOS Press, Amsterdam, Netherlands
2004

[15] T. Meinl, C. Borgelt, and M.R. Berthold. Mining
Fragments with Fuzzy Chains in Molecular Databases.
Proc. 2nd Int. Workshop on Mining Graphs, Trees
and Sequences (MGTS 2004, Pisa, Italy), 49–60.
University of Pisa, Pisa, Italy 2004

[16] S. Nijssen and J.N. Kok. A Quickstart in Frequent
Structure Mining can Make a Difference. Proc. 10th
ACM SIGKDD Int. Conf. on Knowledge Discovery
and Data Mining (KDD2004, Seattle, WA), 647–652.
ACM Press, New York, NY, USA 2004

[17] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal.
Discovering Frequent Closed Itemsets for Association
Rules. Proc. 7th Int. Conf. on Database Theory
(ICDT’99, Jerusalem, Israel), LNCS 1540:398–416.
Springer-Verlag, Heidelberg, Germany 1999

[18] T. Washio and H. Motoda. State of the Art of
Graph-Based Data Mining. SIGKDD Explorations
Newsletter 5(1):59–68. ACM Press, New York, NY,
USA 2003

[19] X. Yan and J. Han. gSpan: Graph-Based Substructure
Pattern Mining. Proc. 2nd IEEE Int. Conf. on Data
Mining (ICDM 2003, Maebashi, Japan), 721–724.
IEEE Press, Piscataway, NJ, USA 2002

[20] X. Yan and J. Han. Closegraph: Mining Closed
Frequent Graph Patterns. Proc. 9th ACM SIGKDD
Int. Conf. on Knowledge Discovery and Data Mining
(KDD 2003, Washington, DC), 286–295. ACM Press,
New York, NY, USA 2003

[21] M. Zaki, S. Parthasarathy, M. Ogihara, and W. Li.
New Algorithms for Fast Discovery of Association
Rules. Proc. 3rd Int. Conf. on Knowledge Discovery
and Data Mining (KDD’97, Newport Beach, CA),
283–296. AAAI Press, Menlo Park, CA, USA 1997

15

